BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33828181)

  • 21. Contact Reactions between Individuals of the Coral-killing sponge,
    Hirose Y; Aini SN; Yamashiro H
    Zool Stud; 2021; 60():e41. PubMed ID: 35003335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.
    Stubler AD; Furman BT; Peterson BJ
    Glob Chang Biol; 2015 Nov; 21(11):4006-20. PubMed ID: 26087148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Outbreaks of Acropora white syndrome and Terpios sponge overgrowth combined with coral mortality in Palk Bay, southeast coast of India.
    Thinesh T; Mathews G; Diraviya Raj K; Edward JKP
    Dis Aquat Organ; 2017 Sep; 126(1):63-70. PubMed ID: 28930086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Could some coral reefs become sponge reefs as our climate changes?
    Bell JJ; Davy SK; Jones T; Taylor MW; Webster NS
    Glob Chang Biol; 2013 Sep; 19(9):2613-24. PubMed ID: 23553821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoacclimation to light-limitation in a clionaid sponge; implications for understanding sponge bioerosion on turbid reefs.
    Marlow J; Davy SK; Haris A; Bell JJ
    Mar Pollut Bull; 2018 Oct; 135():466-474. PubMed ID: 30301060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sponge-derived matter is assimilated by coral holobionts.
    Reigel AM; Easson CG; Apprill A; Freeman CJ; Bartley MM; Fiore CL
    Commun Biol; 2024 Feb; 7(1):146. PubMed ID: 38308082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clionapyrrolidine A--a metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact.
    Chaves-Fonnegra A; Castellanos L; Zea S; Duque C; Rodríguez J; Jiménez C
    J Chem Ecol; 2008 Dec; 34(12):1565-74. PubMed ID: 19023625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial and sponge loops modify fish production in phase-shifting coral reefs.
    Silveira CB; Silva-Lima AW; Francini-Filho RB; Marques JS; Almeida MG; Thompson CC; Rezende CE; Paranhos R; Moura RL; Salomon PS; Thompson FL
    Environ Microbiol; 2015 Oct; 17(10):3832-46. PubMed ID: 25817914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trophic ecology of Angolan cold-water coral reefs (SE Atlantic) based on stable isotope analyses.
    Vinha B; Rossi S; Gori A; Hanz U; Pennetta A; De Benedetto GE; Mienis F; Huvenne VAI; Hebbeln D; Wienberg C; Titschack J; Freiwald A; Piraino S; Orejas C
    Sci Rep; 2023 Jun; 13(1):9933. PubMed ID: 37336945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reciprocal-transplantation between shallow and mesophotic stony corals.
    Tamir R; Ben-Zvi O; Eyal G; Kramer N; Loya Y
    Mar Environ Res; 2020 Oct; 161():105035. PubMed ID: 32771807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seabirds supply nitrogen to reef-building corals on remote Pacific islets.
    Lorrain A; Houlbrèque F; Benzoni F; Barjon L; Tremblay-Boyer L; Menkes C; Gillikin DP; Payri C; Jourdan H; Boussarie G; Verheyden A; Vidal E
    Sci Rep; 2017 Jun; 7(1):3721. PubMed ID: 28623288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Landscape-scale patterns of nutrient enrichment in a coral reef ecosystem: implications for coral to algae phase shifts.
    Adam TC; Burkepile DE; Holbrook SJ; Carpenter RC; Claudet J; Loiseau C; Thiault L; Brooks AJ; Washburn L; Schmitt RJ
    Ecol Appl; 2021 Jan; 31(1):e2227. PubMed ID: 32918509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios.
    Bennett H; Bell JJ; Davy SK; Webster NS; Francis DS
    Glob Chang Biol; 2018 Jul; 24(7):3130-3144. PubMed ID: 29505691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbiomes of stony and soft deep-sea corals share rare core bacteria.
    Kellogg CA
    Microbiome; 2019 Jun; 7(1):90. PubMed ID: 31182168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.
    Loh TL; Pawlik JR
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4151-6. PubMed ID: 24567392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing the relationship between microbiome composition and flux of carbon and nutrients in Caribbean coral reef sponges.
    Gantt SE; McMurray SE; Stubler AD; Finelli CM; Pawlik JR; Erwin PM
    Microbiome; 2019 Aug; 7(1):124. PubMed ID: 31466521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress.
    Qin Z; Yu K; Liang Y; Chen B; Huang X
    Sci Total Environ; 2020 Apr; 711():134610. PubMed ID: 32000316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sponge diversity in Eastern Tropical Pacific coral reefs: an interoceanic comparison.
    Carballo JL; Cruz-Barraza JA; Vega C; Nava H; Chávez-Fuentes MDC
    Sci Rep; 2019 Jun; 9(1):9409. PubMed ID: 31253874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting Photosymbiosis in Fossil Scleractinian Corals.
    Tornabene C; Martindale RC; Wang XT; Schaller MF
    Sci Rep; 2017 Aug; 7(1):9465. PubMed ID: 28842582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.