BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33828185)

  • 1. Postnatal structural development of mammalian Basilar Membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning.
    Tani T; Koike-Tani M; Tran MT; Shribak M; Levic S
    Sci Rep; 2021 Apr; 11(1):7581. PubMed ID: 33828185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration of the organ of Corti within the cochlear apex in mice.
    Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS
    J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basilar membrane tension calculations for the gerbil cochlea.
    Naidu RC; Mountain DC
    J Acoust Soc Am; 2007 Feb; 121(2):994-1002. PubMed ID: 17348522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear partition anatomy and motion in humans differ from the classic view of mammals.
    Raufer S; Guinan JJ; Nakajima HH
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13977-13982. PubMed ID: 31235601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lesions of the organ of corti on hearing.
    Yao W; Gao L; Su J; Karpeta N; Xie W; Duan M
    Acta Otolaryngol; 2022 Feb; 142(2):118-126. PubMed ID: 35098870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.
    Cooper NP; Vavakou A; van der Heijden M
    Nat Commun; 2018 Aug; 9(1):3054. PubMed ID: 30076297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of the organ of Corti in cats: a light microscopic morphometric study.
    Sato M; Leake PA; Hradek GT
    Hear Res; 1999 Jan; 127(1-2):1-13. PubMed ID: 9925011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound Induced Vibrations Deform the Organ of Corti Complex in the Low-Frequency Apical Region of the Gerbil Cochlea for Normal Hearing : Sound Induced Vibrations Deform the Organ of Corti Complex.
    Meenderink SWF; Lin X; Park BH; Dong W
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):579-591. PubMed ID: 35798901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative polarized light microscopy of unstained mammalian cochlear sections.
    Kalwani NM; Ong CA; Lysaght AC; Haward SJ; McKinley GH; Stankovic KM
    J Biomed Opt; 2013 Feb; 18(2):26021. PubMed ID: 23407909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea.
    Schweitzer L; Lutz C; Hobbs M; Weaver SP
    Hear Res; 1996 Aug; 97(1-2):84-94. PubMed ID: 8844189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the gerbil inner ear observed in the hemicochlea.
    Richter CP; Edge R; He DZ; Dallos P
    J Assoc Res Otolaryngol; 2000 Nov; 1(3):195-210. PubMed ID: 11545226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efferent-mediated control of basilar membrane motion.
    Cooper NP; Guinan JJ
    J Physiol; 2006 Oct; 576(Pt 1):49-54. PubMed ID: 16901947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics.
    Meaud J; Grosh K
    J Acoust Soc Am; 2010 Mar; 127(3):1411-21. PubMed ID: 20329841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Stiffness gradient of the basilar membrane and tonotopia in the internal ear of mammals].
    Prokof'eva LI; ChernyÄ­ AG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (3):44-50. PubMed ID: 3580419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of the organ of Corti in the wild house mouse, laboratory mouse, and their hybrid.
    Burda H; Branis M
    Hear Res; 1988 Oct; 36(1):97-105. PubMed ID: 3198524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes of mechanics measured in the gerbil cochlea.
    Emadi G; Richter CP
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):22-32. PubMed ID: 18046606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal basilar membrane motion in low-frequency hearing.
    Warren RL; Ramamoorthy S; Ciganović N; Zhang Y; Wilson TM; Petrie T; Wang RK; Jacques SL; Reichenbach T; Nuttall AL; Fridberger A
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4304-10. PubMed ID: 27407145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.