BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33828185)

  • 21. Longitudinal coupling in the basilar membrane.
    Naidu RC; Mountain DC
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):257-67. PubMed ID: 11669398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomy of the Human Osseous Spiral Lamina and Cochlear Partition Bridge: Relevance for Cochlear Partition Motion.
    Raufer S; Idoff C; Zosuls A; Marino G; Blanke N; Bigio IJ; O'Malley JT; Burgess BJ; Nadol JB; Guinan JJ; Nakajima HH
    J Assoc Res Otolaryngol; 2020 Apr; 21(2):171-182. PubMed ID: 32166603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuned hair cells for hearing, but tuned basilar membrane for overload protection: evidence from dolphins, bats, and desert rodents.
    Braun M
    Hear Res; 1994 Jul; 78(1):98-114. PubMed ID: 7961182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biophysical origin of traveling-wave dispersion in the cochlea.
    Ramamoorthy S; Zha DJ; Nuttall AL
    Biophys J; 2010 Sep; 99(6):1687-95. PubMed ID: 20858412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Somatostatin receptor types 1 and 2 in the developing mammalian cochlea.
    Bodmer D; Brand Y; Radojevic V
    Dev Neurosci; 2012; 34(4):342-53. PubMed ID: 22986312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea.
    Wenzel GI; Anvari B; Mazhar A; Pikkula B; Oghalai JS
    J Biomed Opt; 2007; 12(2):021007. PubMed ID: 17477714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling the mystery of hearing in gerbil and other rodents with an arch-beam model of the basilar membrane.
    Kapuria S; Steele CR; Puria S
    Sci Rep; 2017 Mar; 7(1):228. PubMed ID: 28331175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Basilar membrane velocity noise.
    Nuttall AL; Guo M; Ren T; Dolan DF
    Hear Res; 1997 Dec; 114(1-2):35-42. PubMed ID: 9447916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea.
    Nuttall AL; Guo M; Ren T
    Hear Res; 1999 May; 131(1-2):39-46. PubMed ID: 10355603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basic maps in the auditory midbrain.
    Herrnberger B; Kempf S; Ehret G
    Biol Cybern; 2002 Oct; 87(4):231-40. PubMed ID: 12386739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative aspects of cochlear functional organization in mammals.
    Vater M; Kössl M
    Hear Res; 2011 Mar; 273(1-2):89-99. PubMed ID: 20630478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consequences of Location-Dependent Organ of Corti Micro-Mechanics.
    Liu Y; Gracewski SM; Nam JH
    PLoS One; 2015; 10(8):e0133284. PubMed ID: 26317521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea.
    Lukashkin AN; Bashtanov ME; Russell IJ
    J Neurosci Methods; 2005 Oct; 148(2):122-9. PubMed ID: 15978669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What basilar-membrane tuning says about cochlear micromechanics.
    Zwislocki JJ; Kletsky EJ
    Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea.
    Murugasu E; Russell IJ
    J Neurosci; 1996 Jan; 16(1):325-32. PubMed ID: 8613799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.