BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 33828462)

  • 1. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit.
    Meserve JH; Navarro MF; Ortiz EA; Granato M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute Regulation of Habituation Learning via Posttranslational Palmitoylation.
    Nelson JC; Witze E; Ma Z; Ciocco F; Frerotte A; Randlett O; Foskett JK; Granato M
    Curr Biol; 2020 Jul; 30(14):2729-2738.e4. PubMed ID: 32502414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Socially Mediated Shift in Neural Circuits Activation Regulated by Synergistic Neuromodulatory Signaling.
    Clements KN; Ahn S; Park C; Heagy FK; Miller TH; Kassai M; Issa FA
    eNeuro; 2023 Nov; 10(11):. PubMed ID: 37914408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single base pair substitution in zebrafish distinguishes between innate and acute startle behavior regulation.
    Ortiz EA; Campbell PD; Nelson JC; Granato M
    PLoS One; 2024; 19(3):e0300529. PubMed ID: 38498506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The calcium-sensing receptor (CaSR) regulates zebrafish sensorimotor decision making via a genetically defined cluster of hindbrain neurons.
    Shoenhard H; Jain RA; Granato M
    Cell Rep; 2022 Dec; 41(10):111790. PubMed ID: 36476852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish.
    Randlett O; Haesemeyer M; Forkin G; Shoenhard H; Schier AF; Engert F; Granato M
    Curr Biol; 2019 Apr; 29(8):1337-1345.e4. PubMed ID: 30955936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyfip2 controls the acoustic startle threshold through FMRP, actin polymerization, and GABA
    Deslauriers JC; Ghotkar RP; Russ LA; Jarman JA; Martin RM; Tippett RG; Sumathipala SH; Burton DF; Cole DC; Marsden KC
    bioRxiv; 2024 Feb; ():. PubMed ID: 38187577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 4 testing arena sizes and 11 types of embryo media on sensorimotor behaviors in wild-type and
    Hodorovich DR; Fryer Harris T; Burton D; Neese K; Bieler R; Chudasama V; Marsden KC
    bioRxiv; 2023 Aug; ():. PubMed ID: 37577457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and pharmacological analyses of visual habituation learning in larval zebrafish.
    Lamiré LA; Haesemeyer M; Engert F; Granato M; Randlett O
    Elife; 2023 Dec; 12():. PubMed ID: 38108818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single base pair substitution on Chromosome 25 in zebrafish distinguishes between development and acute regulation of behavioral thresholds.
    Ortiz EA; Campbell PD; Nelson JC; Granato M
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon-Rhodamine Functionalized Evocalcet Probes Potently and Selectively Label Calcium Sensing Receptors
    Bátora D; Fischer JP; Kaderli RM; Varga M; Lochner M; Gertsch J
    ACS Pharmacol Transl Sci; 2024 May; 7(5):1557-1570. PubMed ID: 38751613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows.
    Zúñiga Mouret R; Greenbaum JP; Doll HM; Brody EM; Iacobucci EL; Roland NC; Simamora RC; Ruiz I; Seymour R; Ludwick L; Krawitz JA; Groneberg AH; Marques JC; Laborde A; Rajan G; Del Bene F; Orger MB; Jain RA
    iScience; 2024 Apr; 27(4):109455. PubMed ID: 38550987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of cooperative and opposing molecular programs drives learning-associated behavioral plasticity.
    Nelson JC; Shoenhard H; Granato M
    PLoS Genet; 2023 Mar; 19(3):e1010650. PubMed ID: 36972301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner-Cell During Habituation.
    Bátora D; Zsigmond Á; Lőrincz IZ; Szegvári G; Varga M; Málnási-Csizmadia A
    Front Neural Circuits; 2021; 15():648487. PubMed ID: 33828462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Ca(2+) Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation.
    Marsden KC; Granato M
    Cell Rep; 2015 Dec; 13(9):1733-40. PubMed ID: 26655893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromodulatory Regulation of Behavioral Individuality in Zebrafish.
    Pantoja C; Hoagland A; Carroll EC; Karalis V; Conner A; Isacoff EY
    Neuron; 2016 Aug; 91(3):587-601. PubMed ID: 27397519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound.
    Ogino K; Yamada K; Nishioka T; Oda Y; Kaibuchi K; Hirata H
    J Neurosci; 2019 Nov; 39(45):8988-8997. PubMed ID: 31558619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes.
    Hale ME; Katz HR; Peek MY; Fremont RT
    J Neurogenet; 2016 Jun; 30(2):89-100. PubMed ID: 27302612
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.