These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 33828576)
1. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. Rienth M; Vigneron N; Darriet P; Sweetman C; Burbidge C; Bonghi C; Walker RP; Famiani F; Castellarin SD Front Plant Sci; 2021; 12():643258. PubMed ID: 33828576 [TBL] [Abstract][Full Text] [Related]
2. Different Temperature and UV Patterns Modulate Berry Maturation and Volatile Compounds Accumulation in Campos-Arguedas F; Sarrailhé G; Nicolle P; Dorais M; Brereton NJB; Pitre FE; Pedneault K Front Plant Sci; 2022; 13():862259. PubMed ID: 35845654 [TBL] [Abstract][Full Text] [Related]
3. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. Ferrandino A; Pagliarani C; Pérez-Álvarez EP Front Plant Sci; 2023; 14():1124298. PubMed ID: 37404528 [TBL] [Abstract][Full Text] [Related]
4. Impact of agronomic practices on grape aroma composition: a review. Alem H; Rigou P; Schneider R; Ojeda H; Torregrosa L J Sci Food Agric; 2019 Feb; 99(3):975-985. PubMed ID: 30142253 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212 [TBL] [Abstract][Full Text] [Related]
6. Postharvest UV-B exposure drives changes in primary metabolism, phenolic concentration, and volatilome profile in berries of different grape (Vitis vinifera L.) varieties. Narra F; Castagna A; Palai G; Havlík J; Bergo AM; D'Onofrio C; Ranieri A; Santin M J Sci Food Agric; 2023 Oct; 103(13):6340-6351. PubMed ID: 37195064 [TBL] [Abstract][Full Text] [Related]
7. ABA and GA Murcia G; Fontana A; Pontin M; Baraldi R; Bertazza G; Piccoli PN Phytochemistry; 2017 Mar; 135():34-52. PubMed ID: 27998613 [TBL] [Abstract][Full Text] [Related]
8. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism. Wang L; Sun X; Weiszmann J; Weckwerth W Front Plant Sci; 2017; 8():1066. PubMed ID: 28713396 [TBL] [Abstract][Full Text] [Related]
9. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. Rienth M; Vigneron N; Walker RP; Castellarin SD; Sweetman C; Burbidge CA; Bonghi C; Famiani F; Darriet P Front Plant Sci; 2021; 12():717223. PubMed ID: 34956249 [TBL] [Abstract][Full Text] [Related]
10. Berry phenolics of grapevine under challenging environments. Teixeira A; Eiras-Dias J; Castellarin SD; Gerós H Int J Mol Sci; 2013 Sep; 14(9):18711-39. PubMed ID: 24030720 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Water Deficit on Two Greek Alatzas A; Theocharis S; Miliordos DE; Leontaridou K; Kanellis AK; Kotseridis Y; Hatzopoulos P; Koundouras S Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579479 [TBL] [Abstract][Full Text] [Related]
12. Aroma precursors of Grignolino grapes ( Asproudi A; Bonello F; Ragkousi V; Gianotti S; Petrozziello M Front Plant Sci; 2023; 14():1179111. PubMed ID: 37600189 [TBL] [Abstract][Full Text] [Related]
13. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics. Pinasseau L; Vallverdú-Queralt A; Verbaere A; Roques M; Meudec E; Le Cunff L; Péros JP; Ageorges A; Sommerer N; Boulet JC; Terrier N; Cheynier V Front Plant Sci; 2017; 8():1826. PubMed ID: 29163566 [TBL] [Abstract][Full Text] [Related]
15. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
16. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.). Martínez-Lüscher J; Chen CCL; Brillante L; Kurtural SK J Agric Food Chem; 2017 Dec; 65(49):10693-10702. PubMed ID: 29141407 [TBL] [Abstract][Full Text] [Related]
18. Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. Gouot JC; Smith JP; Holzapfel BP; Walker AR; Barril C J Exp Bot; 2019 Jan; 70(2):397-423. PubMed ID: 30388247 [TBL] [Abstract][Full Text] [Related]
19. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. Sun RZ; Cheng G; Li Q; Zhu YR; Zhang X; Wang Y; He YN; Li SY; He L; Chen W; Pan QH; Duan CQ; Wang J BMC Plant Biol; 2019 Dec; 19(1):583. PubMed ID: 31878879 [TBL] [Abstract][Full Text] [Related]
20. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Arias LA; Berli F; Fontana A; Bottini R; Piccoli P Front Plant Sci; 2022; 13():835425. PubMed ID: 35693157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]