These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33828650)

  • 1. Using Coefficient to Distinguish Ambient/Focal Visual Attention During Cartographic Tasks.
    Krejtz K; Çöltekin A; Duchowski A; Niedzielska A
    J Eye Mov Res; 2017 Apr; 10(2):. PubMed ID: 33828650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient and focal attention during complex problem-solving: preliminary evidence from real-world eye movement data.
    Guo Y; Pannasch S; Helmert JR; Kaszowska A
    Front Psychol; 2024; 15():1217106. PubMed ID: 38425554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different "routes" to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning.
    Zhang H; Zherdeva K; Ekstrom AD
    Mem Cognit; 2014 Oct; 42(7):1106-17. PubMed ID: 24845757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential recruitment of brain networks following route and cartographic map learning of spatial environments.
    Zhang H; Copara M; Ekstrom AD
    PLoS One; 2012; 7(9):e44886. PubMed ID: 23028661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye movement patterns in complex tasks: Characteristics of ambient and focal processing.
    Guo Y; Helmert JR; Graupner ST; Pannasch S
    PLoS One; 2022; 17(11):e0277099. PubMed ID: 36350826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention Priority Map of Face Images in Human Early Visual Cortex.
    Mo C; He D; Fang F
    J Neurosci; 2018 Jan; 38(1):149-157. PubMed ID: 29133433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying mental states from eye movements during scene viewing.
    Kardan O; Berman MG; Yourganov G; Schmidt J; Henderson JM
    J Exp Psychol Hum Percept Perform; 2015 Dec; 41(6):1502-14. PubMed ID: 26348069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How central and peripheral vision influence focal and ambient processing during scene viewing.
    Srikantharajah J; Ellard C
    J Vis; 2022 Nov; 22(12):4. PubMed ID: 36322076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The maturation of eye movement behavior: scene viewing characteristics in children and adults.
    Helo A; Pannasch S; Sirri L; Rämä P
    Vision Res; 2014 Oct; 103():83-91. PubMed ID: 25152319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion velocity as a preattentive feature in cartographic symbolization.
    Cybulski P; Krassanakis V
    J Eye Mov Res; 2023; 16(4):. PubMed ID: 38379834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into ambient and focal visual fixations using an automatic classification algorithm.
    Follet B; Le Meur O; Baccino T
    Iperception; 2011; 2(6):592-610. PubMed ID: 23145248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating schematic route maps in wayfinding tasks for in-car navigation.
    Galvão ML; Krukar J; Schwering A
    Cartogr Geogr Inf Sci; 2021; 48(5):449-469. PubMed ID: 34531704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area.
    Colby CL; Duhamel JR; Goldberg ME
    J Neurophysiol; 1996 Nov; 76(5):2841-52. PubMed ID: 8930237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtle eye movement metrics reveal task-relevant representations prior to visual search.
    van Loon AM; Olmos-Solis K; Olivers CNL
    J Vis; 2017 Jun; 17(6):13. PubMed ID: 28637052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.
    Munoz DP; Armstrong IT; Hampton KA; Moore KD
    J Neurophysiol; 2003 Jul; 90(1):503-14. PubMed ID: 12672781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.
    Adeli H; Vitu F; Zelinsky GJ
    J Neurosci; 2017 Feb; 37(6):1453-1467. PubMed ID: 28039373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye movement patterns and visual attention during scene viewing in 3- to 12-month-olds.
    Helo A; Rämä P; Pannasch S; Meary D
    Vis Neurosci; 2016 Jan; 33():E014. PubMed ID: 28359348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient and focal visual processing of naturalistic activity.
    Eisenberg ML; Zacks JM
    J Vis; 2016; 16(2):5. PubMed ID: 27002550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.