These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33829079)

  • 1. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications.
    Dong L; Closson AB; Jin C; Trase I; Chen Z; Zhang JXJ
    Adv Mater Technol; 2019 Oct; 4(10):. PubMed ID: 33829079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing.
    Haroun A; Tarek M; Mosleh M; Ismail F
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures.
    Fernandez SV; Cai F; Chen S; Suh E; Tiepelt J; McIntosh R; Marcus C; Acosta D; Mejorado D; Dagdeviren C
    ACS Biomater Sci Eng; 2023 May; 9(5):2070-2086. PubMed ID: 34735770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable Energy-Harvesting Devices.
    Shi B; Li Z; Fan Y
    Adv Mater; 2018 Nov; 30(44):e1801511. PubMed ID: 30043422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting Inertial Energy and Powering Wearable Devices: A Review.
    Zhang H; Shen Q; Zheng P; Wang H; Zou R; Zhang Z; Pan Y; Zhi JY; Xiang ZR
    Small Methods; 2024 Jan; 8(1):e2300771. PubMed ID: 37853661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion.
    Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting.
    Ryu H; Yoon HJ; Kim SW
    Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiration-driven triboelectric nanogenerators for biomedical applications.
    Li J; Long Y; Yang F; Wang X
    EcoMat; 2020 Sep; 2(3):e12045. PubMed ID: 34172981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.
    Dagdeviren C; Li Z; Wang ZL
    Annu Rev Biomed Eng; 2017 Jun; 19():85-108. PubMed ID: 28633564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of vibration energy harvesting in rail transportation field.
    Qi L; Pan H; Pan Y; Luo D; Yan J; Zhang Z
    iScience; 2022 Mar; 25(3):103849. PubMed ID: 35198908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics.
    Jiang D; Shi B; Ouyang H; Fan Y; Wang ZL; Li Z
    ACS Nano; 2020 Jun; 14(6):6436-6448. PubMed ID: 32459086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices.
    Das KK; Basu B; Maiti P; Dubey AK
    Acta Biomater; 2023 Nov; 171():85-113. PubMed ID: 37673230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators.
    Du T; Dong F; Xi Z; Zhu M; Zou Y; Sun P; Xu M
    Small; 2023 Jun; 19(22):e2300401. PubMed ID: 36840670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.