These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33829169)

  • 1. Four
    Kanzaki N; Ozawa M; Ota Y; Degawa Y
    J Nematol; 2020; 52():. PubMed ID: 33829169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Samplings of Millipedes in Japan and Scarab Beetles in Hong Kong result in five new Species of
    Kanzaki N; Herrmann M; Yoshida K; Weiler C; Rödelsperger C; Sommer RJ
    J Nematol; 2018; 50(4):587-610. PubMed ID: 31094161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symbiosis of the millipede parasitic nematodes Rhigonematoidea and Thelastomatoidea with evolutionary different origins.
    Nagae S; Sato K; Tanabe T; Hasegawa K
    BMC Ecol Evol; 2021 Jun; 21(1):120. PubMed ID: 34118872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a fluorescent compound in the cuticle of the train millipede Parafontaria laminata armigera.
    Kuse M; Yanagi M; Tanaka E; Tani N; Nishikawa T
    Biosci Biotechnol Biochem; 2010; 74(11):2307-9. PubMed ID: 21071838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eight-year periodical outbreaks of the train millipede.
    Niijima K; Nii M; Yoshimura J
    R Soc Open Sci; 2021 Jan; 8(1):201399. PubMed ID: 33614078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and Structural Analysis to Improve the Enantioselectivity of Hydroxynitrile Lyase from
    Nuylert A; Nakabayashi M; Yamaguchi T; Asano Y
    ACS Omega; 2020 Nov; 5(43):27896-27908. PubMed ID: 33163773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fucosylated glycosphingolipid from the millipede, Parafontaria laminata armigera.
    Sugita M; Hayata C; Yoshida T; Suzuki M; Suzuki A; Takeda T; Hori T; Nakatani F
    Biochim Biophys Acta; 1994 Nov; 1215(1-2):163-9. PubMed ID: 7947999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a novel glycosphingolipid from the millipede, Parafontaria laminata armigera, and the assembly of its carbohydrate moiety into multivalent structures.
    Hada N; Sonoda Y; Takeda T
    Carbohydr Res; 2006 Jul; 341(10):1341-52. PubMed ID: 16697985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in Western Europe.
    Herrmann M; Mayer WE; Sommer RJ
    Zoology (Jena); 2006; 109(2):96-108. PubMed ID: 16616467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two nematodes (Nematoda: Diplogastridae, Rhabditidae) from the invasive millipede
    Carta LK; Thomas WK; Meyer-Rochow VB
    J Nematol; 2018; 50(4):479-486. PubMed ID: 31094150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution.
    Weller AM; Mayer WE; Rae R; Sommer RJ
    J Parasitol; 2010 Jun; 96(3):525-31. PubMed ID: 20557197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First report of
    Hajihassani A; Ye W; Hampton BB
    J Nematol; 2019; 51():1-3. PubMed ID: 31088018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits.
    Félix MA; Ailion M; Hsu JC; Richaud A; Wang J
    PLoS One; 2018; 13(8):e0200851. PubMed ID: 30074986
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Phillips G; Pivar RJ; Sun X; Moulton JK; Bernard EC
    J Nematol; 2018 Sep; 50(2):133-146. PubMed ID: 30451434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation.
    Gutiérrez-Gutiérrez C; Castillo P; Cantalapiedra-Navarrete C; Landa BB; Derycke S; Palomares-Rius JE
    Phytopathology; 2011 Oct; 101(10):1168-75. PubMed ID: 21554182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences.
    Rae R; Riebesell M; Dinkelacker I; Wang Q; Herrmann M; Weller AM; Dieterich C; Sommer RJ
    J Exp Biol; 2008 Jun; 211(Pt 12):1927-36. PubMed ID: 18515723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhigonema naylae n. sp. (Rhigonematomorpha: Rhigonematidae) a new parasitic nematode from a Japanese polydesmid millipede (Polydesmida: Xystodesmidae).
    Morffe J; Hasegawa K
    Zootaxa; 2017 May; 4269(2):277-286. PubMed ID: 28610335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoattraction in Pristionchus nematodes and implications for insect recognition.
    Hong RL; Sommer RJ
    Curr Biol; 2006 Dec; 16(23):2359-65. PubMed ID: 17141618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.
    Subbotin SA; Ragsdale EJ; Mullens T; Roberts PA; Mundo-Ocampo M; Baldwin JG
    Mol Phylogenet Evol; 2008 Aug; 48(2):491-505. PubMed ID: 18514550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two new species of Pristionchus (Nematoda: Diplogastridae) support the biogeographic importance of Japan for the evolution of the genus Pristionchus and the model system P. pacificus.
    Kanzaki N; Ragsdale EJ; Herrmann M; Röseler W; Sommer RJ
    Zoolog Sci; 2013 Aug; 30(8):680-92. PubMed ID: 23915163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.