BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33829169)

  • 1. Four
    Kanzaki N; Ozawa M; Ota Y; Degawa Y
    J Nematol; 2020; 52():. PubMed ID: 33829169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Samplings of Millipedes in Japan and Scarab Beetles in Hong Kong result in five new Species of
    Kanzaki N; Herrmann M; Yoshida K; Weiler C; Rödelsperger C; Sommer RJ
    J Nematol; 2018; 50(4):587-610. PubMed ID: 31094161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symbiosis of the millipede parasitic nematodes Rhigonematoidea and Thelastomatoidea with evolutionary different origins.
    Nagae S; Sato K; Tanabe T; Hasegawa K
    BMC Ecol Evol; 2021 Jun; 21(1):120. PubMed ID: 34118872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a fluorescent compound in the cuticle of the train millipede Parafontaria laminata armigera.
    Kuse M; Yanagi M; Tanaka E; Tani N; Nishikawa T
    Biosci Biotechnol Biochem; 2010; 74(11):2307-9. PubMed ID: 21071838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eight-year periodical outbreaks of the train millipede.
    Niijima K; Nii M; Yoshimura J
    R Soc Open Sci; 2021 Jan; 8(1):201399. PubMed ID: 33614078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and Structural Analysis to Improve the Enantioselectivity of Hydroxynitrile Lyase from
    Nuylert A; Nakabayashi M; Yamaguchi T; Asano Y
    ACS Omega; 2020 Nov; 5(43):27896-27908. PubMed ID: 33163773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fucosylated glycosphingolipid from the millipede, Parafontaria laminata armigera.
    Sugita M; Hayata C; Yoshida T; Suzuki M; Suzuki A; Takeda T; Hori T; Nakatani F
    Biochim Biophys Acta; 1994 Nov; 1215(1-2):163-9. PubMed ID: 7947999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a novel glycosphingolipid from the millipede, Parafontaria laminata armigera, and the assembly of its carbohydrate moiety into multivalent structures.
    Hada N; Sonoda Y; Takeda T
    Carbohydr Res; 2006 Jul; 341(10):1341-52. PubMed ID: 16697985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in Western Europe.
    Herrmann M; Mayer WE; Sommer RJ
    Zoology (Jena); 2006; 109(2):96-108. PubMed ID: 16616467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two nematodes (Nematoda: Diplogastridae, Rhabditidae) from the invasive millipede
    Carta LK; Thomas WK; Meyer-Rochow VB
    J Nematol; 2018; 50(4):479-486. PubMed ID: 31094150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution.
    Weller AM; Mayer WE; Rae R; Sommer RJ
    J Parasitol; 2010 Jun; 96(3):525-31. PubMed ID: 20557197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First report of
    Hajihassani A; Ye W; Hampton BB
    J Nematol; 2019; 51():1-3. PubMed ID: 31088018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits.
    Félix MA; Ailion M; Hsu JC; Richaud A; Wang J
    PLoS One; 2018; 13(8):e0200851. PubMed ID: 30074986
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Phillips G; Pivar RJ; Sun X; Moulton JK; Bernard EC
    J Nematol; 2018 Sep; 50(2):133-146. PubMed ID: 30451434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation.
    Gutiérrez-Gutiérrez C; Castillo P; Cantalapiedra-Navarrete C; Landa BB; Derycke S; Palomares-Rius JE
    Phytopathology; 2011 Oct; 101(10):1168-75. PubMed ID: 21554182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences.
    Rae R; Riebesell M; Dinkelacker I; Wang Q; Herrmann M; Weller AM; Dieterich C; Sommer RJ
    J Exp Biol; 2008 Jun; 211(Pt 12):1927-36. PubMed ID: 18515723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhigonema naylae n. sp. (Rhigonematomorpha: Rhigonematidae) a new parasitic nematode from a Japanese polydesmid millipede (Polydesmida: Xystodesmidae).
    Morffe J; Hasegawa K
    Zootaxa; 2017 May; 4269(2):277-286. PubMed ID: 28610335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoattraction in Pristionchus nematodes and implications for insect recognition.
    Hong RL; Sommer RJ
    Curr Biol; 2006 Dec; 16(23):2359-65. PubMed ID: 17141618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.
    Subbotin SA; Ragsdale EJ; Mullens T; Roberts PA; Mundo-Ocampo M; Baldwin JG
    Mol Phylogenet Evol; 2008 Aug; 48(2):491-505. PubMed ID: 18514550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two new species of Pristionchus (Nematoda: Diplogastridae) support the biogeographic importance of Japan for the evolution of the genus Pristionchus and the model system P. pacificus.
    Kanzaki N; Ragsdale EJ; Herrmann M; Röseler W; Sommer RJ
    Zoolog Sci; 2013 Aug; 30(8):680-92. PubMed ID: 23915163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.