BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33829485)

  • 1. Integration of metabolic pathway manipulation and promoter engineering for the fine-tuned biosynthesis of malic acid in Bacillus coagulans.
    Sun W; Jiang B; Zhao D; Pu Z; Bao Y
    Biotechnol Bioeng; 2021 Jul; 118(7):2597-2608. PubMed ID: 33829485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X; Wang Y; Dong X; Hu G; Liu L
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the reductive tricarboxylic acid pathway in Aureobasidium pullulans for enhanced biosynthesis of poly-L-malic acid.
    Qin Z; Feng J; Li Y; Zheng Y; Moore C; Yang ST
    Bioresour Technol; 2024 Feb; 393():130122. PubMed ID: 38040309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].
    Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1484-93. PubMed ID: 24432663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass.
    Deng Y; Mao Y; Zhang X
    Biotechnol Prog; 2016; 32(1):14-20. PubMed ID: 26439318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Production of Malic Acid in
    Xu Y; Zhou Y; Cao W; Liu H
    ACS Synth Biol; 2020 Jun; 9(6):1418-1425. PubMed ID: 32379964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.
    Liu J; Xie Z; Shin HD; Li J; Du G; Chen J; Liu L
    J Biotechnol; 2017 Jul; 253():1-9. PubMed ID: 28506930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of
    Chen Y; Han A; Wang M; Wei D; Wang W
    J Agric Food Chem; 2023 Mar; 71(9):4043-4050. PubMed ID: 36812909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics.
    Chen Y; Sun Y; Liu Z; Dong F; Li Y; Wang Y
    Biotechnol Bioeng; 2020 Nov; 117(11):3545-3558. PubMed ID: 32648961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D; Auriol C; Baylac A; Irague R; Dressaire C; Carnicer-Heras M; Heux S; François JM; Walther T
    Microb Cell Fact; 2018 Jul; 17(1):113. PubMed ID: 30012131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Role and Regulation of a Lactate Permease as Lactate Transporter in Bacillus coagulans DSM1.
    Wang Y; Zhang C; Liu G; Ju J; Yu B; Wang L
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31101607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.
    Sun L; Zhang C; Lyu P; Wang Y; Wang L; Yu B
    Sci Rep; 2016 Nov; 6():37916. PubMed ID: 27885267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli.
    Guo L; Zhang F; Zhang C; Hu G; Gao C; Chen X; Liu L
    Biotechnol Bioeng; 2018 Jun; 115(6):1571-1580. PubMed ID: 29476618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.
    Zhang C; Zhou C; Assavasirijinda N; Yu B; Wang L; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):213. PubMed ID: 29178877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH; Bashkirova L; Berka R; Chandler T; Doty T; McCall K; McCulloch M; McFarland S; Thompson S; Yaver D; Berry A
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH.
    Tian W; Qin J; Lian C; Yao Q; Wang X
    BMC Microbiol; 2022 Dec; 22(1):310. PubMed ID: 36536285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle.
    Tsuji A; Okada S; Hols P; Satoh E
    Enzyme Microb Technol; 2013 Jul; 53(2):97-103. PubMed ID: 23769309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.
    Knuf C; Nookaew I; Remmers I; Khoomrung S; Brown S; Berry A; Nielsen J
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3517-27. PubMed ID: 24413918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of overexpression of carboxylation pathway genes and inactivation of malic enzymes on malic acid production in Escherichia coli].
    Lou F; Li N; Zhao Y; Guo S; Wang Z; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2016 Nov; 32(11):1539-1548. PubMed ID: 29034624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.