These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33829485)

  • 21. Conditional expression of FumA in
    Zhang C; Shi M; Xu Y; Yang D; Lu L; Xue F; Xu Q
    Appl Environ Microbiol; 2024 Apr; 90(4):e0000824. PubMed ID: 38506527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Aspergillus niger for accelerated malic acid biosynthesis by improving NADPH availability.
    Wu N; Wu X; Zhang M; Zhang C; Xu Q
    Biotechnol J; 2024 May; 19(5):e2400014. PubMed ID: 38719614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C4-dicarboxylic acid production by overexpressing the reductive TCA pathway.
    Zhang T; Ge C; Deng L; Tan T; Wang F
    FEMS Microbiol Lett; 2015 May; 362(9):. PubMed ID: 25862576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti.
    Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM
    BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One step open fermentation for lactic acid production from inedible starchy biomass by thermophilic Bacillus coagulans IPE22.
    Wang Y; Cao W; Luo J; Qi B; Wan Y
    Bioresour Technol; 2019 Jan; 272():398-406. PubMed ID: 30388577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.
    Ma K; Hu G; Pan L; Wang Z; Zhou Y; Wang Y; Ruan Z; He M
    Bioresour Technol; 2016 Nov; 219():114-122. PubMed ID: 27479802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Pichia pastoris for malic acid production from methanol.
    Guo F; Dai Z; Peng W; Zhang S; Zhou J; Ma J; Dong W; Xin F; Zhang W; Jiang M
    Biotechnol Bioeng; 2021 Jan; 118(1):357-371. PubMed ID: 32965690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of high concentration of L-lactic acid from cellobiose by thermophilic Bacillus coagulans WCP10-4.
    Ong SA; Ng ZJ; Wu JC
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6501-6508. PubMed ID: 27183994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae.
    Pines O; Shemesh S; Battat E; Goldberg I
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):248-55. PubMed ID: 9299784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains.
    Zelle RM; Harrison JC; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2011 Feb; 77(3):732-8. PubMed ID: 21131518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae.
    Sun L; Zhang Q; Kong X; Liu Y; Li J; Du G; Lv X; Ledesma-Amaro R; Chen J; Liu L
    Bioresour Technol; 2023 Feb; 370():128580. PubMed ID: 36608859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current advance in biological production of malic acid using wild type and metabolic engineered strains.
    Dai Z; Zhou H; Zhang S; Gu H; Yang Q; Zhang W; Dong W; Ma J; Fang Y; Jiang M; Xin F
    Bioresour Technol; 2018 Jun; 258():345-353. PubMed ID: 29550171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of a Biosensor in Response to Malate in
    Zhang Y; Li Y; Xiao F; Wang H; Zhang L; Ding Z; Xu S; Gu Z; Shi G
    ACS Synth Biol; 2021 Jul; 10(7):1775-1784. PubMed ID: 34213891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.
    Qin J; Wang X; Wang L; Zhu B; Zhang X; Yao Q; Xu P
    PLoS One; 2015; 10(4):e0124316. PubMed ID: 25875592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic Engineering of Escherichia coli K12 for Homofermentative Production of L-Lactate from Xylose.
    Jiang T; Zhang C; He Q; Zheng Z; Ouyang J
    Appl Biochem Biotechnol; 2018 Feb; 184(2):703-715. PubMed ID: 28840503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordination of metabolic pathways: Enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis.
    Xin B; Tao F; Wang Y; Liu H; Ma C; Xu P
    Metab Eng; 2017 May; 41():102-114. PubMed ID: 28396036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the L-malate biosynthesis pathway involved in poly(β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors.
    Zeng W; Zhang B; Liu Q; Chen G; Liang Z
    J Microbiol; 2019 Apr; 57(4):281-287. PubMed ID: 30721461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.