BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33829707)

  • 1. [The Clinical Effectiveness of Neural Network-based Boundary Recognition of Upper Abdominal Organs on CT Images].
    Xia CC; Zhang K; Liu XM; Pu J; Peng WL; Xu X; Zeng LM; Zeng W; Li ZL
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):306-310. PubMed ID: 33829707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT.
    Nakamoto Y; Tatsumi M; Cohade C; Osman M; Marshall LT; Wahl RL
    Eur J Nucl Med Mol Imaging; 2003 Apr; 30(4):597-602. PubMed ID: 12548443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive content-based image retrieval with deep learning for CT abdominal organ recognition.
    Lo CM; Wang CC; Hung PH
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38232396
    [No Abstract]   [Full Text] [Related]  

  • 6. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment.
    Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH
    Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images.
    Agrawal V; Udupa J; Tong Y; Torigian D
    Med Phys; 2020 Oct; 47(10):5020-5031. PubMed ID: 32761899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks.
    Chen CI; Lu NH; Huang YH; Liu KY; Hsu SY; Matsushima A; Wang YM; Chen TB
    J Xray Sci Technol; 2022; 30(5):953-966. PubMed ID: 35754254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based body part recognition algorithm for three-dimensional medical images.
    Ouyang Z; Zhang P; Pan W; Li Q
    Med Phys; 2022 May; 49(5):3067-3079. PubMed ID: 35157332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete abdomen and pelvis segmentation using U-net variant architecture.
    Weston AD; Korfiatis P; Philbrick KA; Conte GM; Kostandy P; Sakinis T; Zeinoddini A; Boonrod A; Moynagh M; Takahashi N; Erickson BJ
    Med Phys; 2020 Nov; 47(11):5609-5618. PubMed ID: 32740931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network.
    Tong N; Xu Y; Zhang J; Gou S; Li M
    Phys Med; 2023 Jun; 110():102595. PubMed ID: 37178624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Disease Classification in Abdominal CT Scans through RGB Superposition Methods and 2D Convolutional Neural Networks: A Study of Appendicitis and Diverticulitis.
    Lee GP; Park SH; Kim YJ; Chung JW; Kim KG
    Comput Math Methods Med; 2023; 2023():7714483. PubMed ID: 37284168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed Tomography of the Abdomen in Eight Clinically Normal Common Marmosets (Callithrix jacchus).
    du Plessis WM; Groenewald HB; Elliott D
    Anat Histol Embryol; 2017 Aug; 46(4):365-372. PubMed ID: 28653415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of spleen and kidney organs from CT scans based on classification of slices in rotational views.
    Les T; Markiewicz T; Dziekiewicz M; Gallego J; Swiderska-Chadaj Z; Lorent M
    Sci Rep; 2023 Apr; 13(1):5709. PubMed ID: 37029169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging.
    Kaufmann S; Sauter A; Spira D; Gatidis S; Ketelsen D; Heuschmid M; Claussen CD; Thomas C
    Acad Radiol; 2013 May; 20(5):596-603. PubMed ID: 23490736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules.
    Lee CC; Chung PC; Tsai HM
    IEEE Trans Inf Technol Biomed; 2003 Sep; 7(3):208-17. PubMed ID: 14518735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.