BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33830069)

  • 1. Novel insights in cell cycle dysregulation during prostate cancer progression.
    Ben-Salem S; Venkadakrishnan VB; Heemers HV
    Endocr Relat Cancer; 2021 May; 28(6):R141-R155. PubMed ID: 33830069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deregulated kinase action in prostate cancer: molecular basis and therapeutic implications.
    Singh N; Heemers HV
    Endocr Relat Cancer; 2023 Sep; 30(9):. PubMed ID: 37279256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative splicing in prostate cancer progression and therapeutic resistance.
    Rawat C; Heemers HV
    Oncogene; 2024 May; 43(22):1655-1668. PubMed ID: 38658776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic alterations impact cell cycle-related genes during prostate cancer progression.
    Ben-Salem S; Venkadakrishnan VB; Heemers HV
    Endocr Relat Cancer; 2021 May; 28(6):L5-L10. PubMed ID: 33852421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving resistance specificity in prostate cancer.
    Wadhwa B; Dumbre R
    Chem Biol Interact; 2016 Dec; 260():243-247. PubMed ID: 27720870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a castrate resistant transplant tumor model of prostate cancer.
    Ellis L; Lehet K; Ramakrishnan S; Adelaiye R; Pili R
    Prostate; 2012 May; 72(6):587-91. PubMed ID: 21796655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen action in the prostate gland.
    Yadav N; Heemers HV
    Minerva Urol Nefrol; 2012 Mar; 64(1):35-49. PubMed ID: 22402316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction.
    Lee GT; Kang DI; Ha YS; Jung YS; Chung J; Min K; Kim TH; Moon KH; Chung JM; Lee DH; Kim WJ; Kim IY
    Br J Cancer; 2014 Mar; 110(6):1634-44. PubMed ID: 24518599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.
    Shih JW; Wang LY; Hung CL; Kung HJ; Hsieh CL
    Int J Mol Sci; 2015 Dec; 16(12):28943-78. PubMed ID: 26690121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level.
    Karantanos T; Evans CP; Tombal B; Thompson TC; Montironi R; Isaacs WB
    Eur Urol; 2015 Mar; 67(3):470-9. PubMed ID: 25306226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NDRG2 acts as a negative regulator downstream of androgen receptor and inhibits the growth of androgen-dependent and castration-resistant prostate cancer.
    Yu C; Wu G; Li R; Gao L; Yang F; Zhao Y; Zhang J; Zhang R; Zhang J; Yao L; Yuan J; Li X
    Cancer Biol Ther; 2015; 16(2):287-96. PubMed ID: 25756511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer.
    Takayama K; Horie-Inoue K; Suzuki T; Urano T; Ikeda K; Fujimura T; Takahashi S; Homma Y; Ouchi Y; Inoue S
    Mol Endocrinol; 2012 May; 26(5):748-61. PubMed ID: 22456197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant-negative androgen receptor inhibition of intracrine androgen-dependent growth of castration-recurrent prostate cancer.
    Titus MA; Zeithaml B; Kantor B; Li X; Haack K; Moore DT; Wilson EM; Mohler JL; Kafri T
    PLoS One; 2012; 7(1):e30192. PubMed ID: 22272301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen-responsive serum response factor target genes regulate prostate cancer cell migration.
    Verone AR; Duncan K; Godoy A; Yadav N; Bakin A; Koochekpour S; Jin JP; Heemers HV
    Carcinogenesis; 2013 Aug; 34(8):1737-46. PubMed ID: 23576568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches.
    Karantanos T; Corn PG; Thompson TC
    Oncogene; 2013 Dec; 32(49):5501-11. PubMed ID: 23752182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TUBB3 is associated with PTEN, neuroendocrine differentiation, and castration resistance in prostate cancer.
    Sekino Y; Han X; Babasaki T; Miyamoto S; Kobatake K; Kitano H; Ikeda K; Goto K; Inoue S; Hayashi T; Teishima J; Shiota M; Takeshima Y; Yasui W; Matsubara A
    Urol Oncol; 2021 Jun; 39(6):368.e1-368.e9. PubMed ID: 33771409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo.
    Thomas C; Lamoureux F; Crafter C; Davies BR; Beraldi E; Fazli L; Kim S; Thaper D; Gleave ME; Zoubeidi A
    Mol Cancer Ther; 2013 Nov; 12(11):2342-55. PubMed ID: 23966621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen receptors in early and castration resistant prostate cancer: friend or foe?
    Pelekanou V; Notas G; Stathopoulos EN; Castanas E; Kampa M
    Hormones (Athens); 2013; 12(2):224-35. PubMed ID: 23933691
    [No Abstract]   [Full Text] [Related]  

  • 19. Exploitation of the Androgen Receptor to Overcome Taxane Resistance in Advanced Prostate Cancer.
    Martin SK; Kyprianou N
    Adv Cancer Res; 2015; 127():123-58. PubMed ID: 26093899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostate cancer cells tolerate a narrow range of androgen receptor expression and activity.
    Tararova ND; Narizhneva N; Krivokrisenko V; Gudkov AV; Gurova KV
    Prostate; 2007 Dec; 67(16):1801-15. PubMed ID: 17935158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.