These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 33830353)
1. Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics. Allen LJS; Wang X J Math Biol; 2021 Apr; 82(6):48. PubMed ID: 33830353 [TBL] [Abstract][Full Text] [Related]
2. Disease Emergence in Multi-Patch Stochastic Epidemic Models with Demographic and Seasonal Variability. Nipa KF; Allen LJS Bull Math Biol; 2020 Nov; 82(12):152. PubMed ID: 33231753 [TBL] [Abstract][Full Text] [Related]
3. Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease. Lahodny GE; Gautam R; Ivanek R J Biol Dyn; 2015; 9 Suppl 1():128-55. PubMed ID: 25198247 [TBL] [Abstract][Full Text] [Related]
4. Probability of a disease outbreak in stochastic multipatch epidemic models. Lahodny GE; Allen LJ Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483 [TBL] [Abstract][Full Text] [Related]
5. Probability of Disease Extinction or Outbreak in a Stochastic Epidemic Model for West Nile Virus Dynamics in Birds. Maliyoni M Acta Biotheor; 2021 Jun; 69(2):91-116. PubMed ID: 32889647 [TBL] [Abstract][Full Text] [Related]
6. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population. Nipa KF; Jang SR; Allen LJS Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746 [TBL] [Abstract][Full Text] [Related]
7. Extinction thresholds in deterministic and stochastic epidemic models. Allen LJ; Lahodny GE J Biol Dyn; 2012; 6():590-611. PubMed ID: 22873607 [TBL] [Abstract][Full Text] [Related]
8. Modeling the within-host dynamics of cholera: bacterial-viral interaction. Wang X; Wang J J Biol Dyn; 2017 Aug; 11(sup2):484-501. PubMed ID: 28004608 [TBL] [Abstract][Full Text] [Related]
9. Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. van Herwaarden OA J Math Biol; 1997 Aug; 35(7):793-813. PubMed ID: 9269737 [TBL] [Abstract][Full Text] [Related]
10. The probability of epidemic burnout in the stochastic SIR model with vital dynamics. Parsons TL; Bolker BM; Dushoff J; Earn DJD Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313708120. PubMed ID: 38277438 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous network epidemics: real-time growth, variance and extinction of infection. Ball F; House T J Math Biol; 2017 Sep; 75(3):577-619. PubMed ID: 28097418 [TBL] [Abstract][Full Text] [Related]
12. A Comparison of Deterministic and Stochastic Plant-Vector-Virus Models Based on Probability of Disease Extinction and Outbreak. Maity S; Mandal PS Bull Math Biol; 2022 Feb; 84(3):41. PubMed ID: 35150332 [TBL] [Abstract][Full Text] [Related]
13. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Maliyoni M; Chirove F; Gaff HD; Govinder KS Bull Math Biol; 2017 Sep; 79(9):1999-2021. PubMed ID: 28707219 [TBL] [Abstract][Full Text] [Related]
14. Stochastic Periodic Solution of a Susceptible-Infective Epidemic Model in a Polluted Environment under Environmental Fluctuation. Zhao Y; Li J; Ma X Comput Math Methods Med; 2018; 2018():7360685. PubMed ID: 29853987 [TBL] [Abstract][Full Text] [Related]
15. Random migration processes between two stochastic epidemic centers. Sazonov I; Kelbert M; Gravenor MB Math Biosci; 2016 Apr; 274():45-57. PubMed ID: 26877075 [TBL] [Abstract][Full Text] [Related]
16. Impact of the infectious period on epidemics. Wilkinson RR; Sharkey KJ Phys Rev E; 2018 May; 97(5-1):052403. PubMed ID: 29906938 [TBL] [Abstract][Full Text] [Related]
17. Discrete stochastic metapopulation model with arbitrarily distributed infectious period. Hernandez-Ceron N; Chavez-Casillas JA; Feng Z Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286 [TBL] [Abstract][Full Text] [Related]
18. Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations. Nakamura GM; Martinez AS Sci Rep; 2019 Nov; 9(1):15841. PubMed ID: 31676857 [TBL] [Abstract][Full Text] [Related]
19. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Olabode D; Culp J; Fisher A; Tower A; Hull-Nye D; Wang X Math Biosci Eng; 2021 Jan; 18(1):950-967. PubMed ID: 33525127 [TBL] [Abstract][Full Text] [Related]
20. A stochastic epidemic model for the dynamics of two pathogens in a single tick population. Maliyoni M; Chirove F; Gaff HD; Govinder KS Theor Popul Biol; 2019 Jun; 127():75-90. PubMed ID: 31002861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]