These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33830611)

  • 1. Fabrication of Gradient and Patterned Organic Thin Films by Bipolar Electrolytic Micelle Disruption Using Redox-Active Surfactants.
    Zhou Y; Shida N; Tomita I; Inagi S
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14620-14629. PubMed ID: 33830611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis.
    Shida N; Zhou Y; Inagi S
    Acc Chem Res; 2019 Sep; 52(9):2598-2608. PubMed ID: 31436076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: fabrication of gradient and patterned polymer brushes.
    Shida N; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3922-6. PubMed ID: 25704396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bipolar Electrochemistry - A Powerful Tool for Micro/Nano-Electrochemistry.
    Wang YL; Cao JT; Liu YM
    ChemistryOpen; 2022 Dec; 11(12):e202200163. PubMed ID: 36229230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Plane Growth of Poly(3,4-ethylenedioxythiophene) Films on a Substrate Surface by Bipolar Electropolymerization.
    Watanabe T; Ohira M; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    ACS Macro Lett; 2018 May; 7(5):551-555. PubMed ID: 35632929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient doping of conducting polymer films by means of bipolar electrochemistry.
    Ishiguro Y; Inagi S; Fuchigami T
    Langmuir; 2011 Jun; 27(11):7158-62. PubMed ID: 21568350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations.
    Maldonado S; Smith TJ; Williams RD; Morin S; Barton E; Stevenson KJ
    Langmuir; 2006 Mar; 22(6):2884-91. PubMed ID: 16519499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Electrosynthesis of Gradient Polypyrrole Film Using a Single-Electrode Electrochemical System.
    Shi Y; Villani E; Chen Y; Zhou Y; Chen Z; Hussain A; Xu G; Inagi S
    Anal Chem; 2023 Jan; 95(2):1532-1540. PubMed ID: 36563173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel electrodeposition based on bipolar electrochemistry.
    Ino K; Matsumoto T; Taira N; Kumagai T; Nashimoto Y; Shiku H
    Lab Chip; 2018 Aug; 18(16):2425-2432. PubMed ID: 29978172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Printed Photoluminescent Patterns of Aggregation-Induced-Emission Chromophores on Surface-Anchored Metal-Organic Frameworks.
    Baroni N; Turshatov A; Adams M; Dolgopolova EA; Schlisske S; Hernandez-Sosa G; Wöll C; Shustova NB; Richards BS; Howard IA
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25754-25762. PubMed ID: 30028121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes.
    Chen H; Anderson JL; Anand RK
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18087-18096. PubMed ID: 35417143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-movement of water droplet at the gradient nanostructure of Cu fabricated using bipolar electrochemistry.
    Dorri N; Shahbazi P; Kiani A
    Langmuir; 2014 Feb; 30(5):1376-82. PubMed ID: 24417380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipolar electrochemistry.
    Fosdick SE; Knust KN; Scida K; Crooks RM
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10438-56. PubMed ID: 23843205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and efficient redox processes within 2D covalent organic framework thin films.
    DeBlase CR; Hernández-Burgos K; Silberstein KE; Rodríguez-Calero GG; Bisbey RP; Abruña HD; Dichtel WR
    ACS Nano; 2015 Mar; 9(3):3178-83. PubMed ID: 25672785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.
    Watanabe S; Akiyoshi Y; Matsumoto M
    J Oleo Sci; 2014; 63(11):1141-7. PubMed ID: 25296571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance.
    Zhang X; Zhang S; Chang C; Feng Y; Li Y; Dong N; Wang K; Zhang L; Blau WJ; Wang J
    Nanoscale; 2015 Feb; 7(7):2978-86. PubMed ID: 25597818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Soft" liquid-phase adsorption for the fabrication of solution processable organic material films on wettability-patterned surfaces.
    Watanabe S; Akiyoshi Y; Matsumoto M
    Langmuir; 2013 Jun; 29(25):7743-8. PubMed ID: 23724898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Step Bipolar Electrochemistry: Generation of Composition Gradient and Visual Screening of Electrocatalytic Activity.
    Termebaf H; Shayan M; Kiani A
    Langmuir; 2015 Dec; 31(48):13238-46. PubMed ID: 26595192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular architecture of thin films fabricated via physical vapor deposition and containing a poly(azo)urethane.
    Aléssio P; Constantino CJ; Job AE; Aroca R; González ER
    J Nanosci Nanotechnol; 2010 May; 10(5):3012-21. PubMed ID: 20358893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin organic films by atmospheric-pressure ion deposition.
    Saf R; Goriup M; Steindl T; Hamedinger TE; Sandholzer D; Hayn G
    Nat Mater; 2004 May; 3(5):323-9. PubMed ID: 15098026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.