These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33830614)

  • 1. Direct and indirect disturbance impacts in forests.
    Bowd EJ; Banks SC; Bissett A; May TW; Lindenmayer DB
    Ecol Lett; 2021 Jun; 24(6):1225-1236. PubMed ID: 33830614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance gradient shows logging affects plant functional groups more than fire.
    Blair DP; McBurney LM; Blanchard W; Banks SC; Lindenmayer DB
    Ecol Appl; 2016 Oct; 26(7):2280-2301. PubMed ID: 27755744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.
    Thom D; Seidl R
    Biol Rev Camb Philos Soc; 2016 Aug; 91(3):760-81. PubMed ID: 26010526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires.
    Lindenmayer DB; Bowd EJ; Gibbons P
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1867):20210082. PubMed ID: 36373929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbance alters the forest soil microbiome.
    Bowd EJ; Banks SC; Bissett A; May TW; Lindenmayer DB
    Mol Ecol; 2022 Jan; 31(2):419-447. PubMed ID: 34687569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key factors controlling microbial community responses after a fire: Importance of severity and recurrence.
    Lombao A; Barreiro A; Fontúrbel MT; Martín A; Carballas T; Díaz-Raviña M
    Sci Total Environ; 2020 Nov; 741():140363. PubMed ID: 32615429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after wildfire.
    Moya D; González-De Vega S; Lozano E; García-Orenes F; Mataix-Solera J; Lucas-Borja ME; de Las Heras J
    J Environ Manage; 2019 Apr; 235():250-256. PubMed ID: 30684810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of wildfire and post-fire salvage logging on rainsplash erosion in a semi-arid pine forest of Central Eastern Spain.
    de Pagter T; Lucas-Borja ME; Navidi M; Carra BG; Baartman J; Zema DA
    J Environ Manage; 2023 Mar; 329():117059. PubMed ID: 36566736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality.
    Yuan Z; Ali A; Loreau M; Ding F; Liu S; Sanaei A; Zhou W; Ye J; Lin F; Fang S; Hao Z; Wang X; Le Bagousse-Pinguet Y
    Glob Chang Biol; 2021 Jun; 27(12):2883-2894. PubMed ID: 33742479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logging and fire regimes alter plant communities.
    Bowd EJ; Lindenmayer DB; Banks SC; Blair DP
    Ecol Appl; 2018 Apr; 28(3):826-841. PubMed ID: 29411919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting fungal responses to wildfire across different ecosystem types.
    Smith GR; Edy LC; Peay KG
    Mol Ecol; 2021 Feb; 30(3):844-854. PubMed ID: 33295012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of an invasive plant are fundamentally altered by a co-occurring forest disturbance.
    Sokol NW; Kuebbing SE; Bradford MA
    Ecology; 2017 Aug; 98(8):2133-2144. PubMed ID: 28518217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corralling a black swan: natural range of variation in a forest landscape driven by rare, extreme events.
    Donato DC; Halofsky JS; Reilly MJ
    Ecol Appl; 2020 Jan; 30(1):e02013. PubMed ID: 31594028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential impacts of wildfire on the population dynamics of an old-forest species.
    Rockweit JT; Franklin AB; Carlson PC
    Ecology; 2017 Jun; 98(6):1574-1582. PubMed ID: 28294305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests.
    Koontz MJ; North MP; Werner CM; Fick SE; Latimer AM
    Ecol Lett; 2020 Mar; 23(3):483-494. PubMed ID: 31922344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-fire forest restoration in the humid tropics: A synthesis of available strategies and knowledge gaps for effective restoration.
    Scheper AC; Verweij PA; van Kuijk M
    Sci Total Environ; 2021 Jun; 771():144647. PubMed ID: 33736177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity and abundance of soil microbial communities decline, and community compositions change with severity of post-logging fire.
    Ammitzboll H; Jordan GJ; Baker SC; Freeman J; Bissett A
    Mol Ecol; 2021 May; 30(10):2434-2448. PubMed ID: 33772907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in plant nutrient utilization during ecosystem recovery after wildfire.
    Song Z; Tian H; Li Z; Luo Y; Liu Y
    J Environ Manage; 2021 Oct; 295():112994. PubMed ID: 34167057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.