BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33830997)

  • 1. CaBagE: A Cas9-based Background Elimination strategy for targeted, long-read DNA sequencing.
    Wallace AD; Sasani TA; Swanier J; Gates BL; Greenland J; Pedersen BS; Varley KE; Quinlan AR
    PLoS One; 2021; 16(4):e0241253. PubMed ID: 33830997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease.
    Ebbert MTW; Farrugia SL; Sens JP; Jansen-West K; Gendron TF; Prudencio M; McLaughlin IJ; Bowman B; Seetin M; DeJesus-Hernandez M; Jackson J; Brown PH; Dickson DW; van Blitterswijk M; Rademakers R; Petrucelli L; Fryer JD
    Mol Neurodegener; 2018 Aug; 13(1):46. PubMed ID: 30126445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic microsatellite repeat expansion cloning and validation.
    Rohilla KJ; Ovington KN; Pater AA; Barton M; Henke AJ; Gagnon KT
    Hum Genet; 2020 Oct; 139(10):1233-1246. PubMed ID: 32277284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing.
    Giesselmann P; Brändl B; Raimondeau E; Bowen R; Rohrandt C; Tandon R; Kretzmer H; Assum G; Galonska C; Siebert R; Ammerpohl O; Heron A; Schneider SA; Ladewig J; Koch P; Schuldt BM; Graham JE; Meissner A; Müller FJ
    Nat Biotechnol; 2019 Dec; 37(12):1478-1481. PubMed ID: 31740840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair.
    Ababneh NA; Scaber J; Flynn R; Douglas A; Barbagallo P; Candalija A; Turner MR; Sims D; Dafinca R; Cowley SA; Talbot K
    Hum Mol Genet; 2020 Aug; 29(13):2200-2217. PubMed ID: 32504093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete sequencing of expanded SAMD12 repeats by long-read sequencing and Cas9-mediated enrichment.
    Mizuguchi T; Toyota T; Miyatake S; Mitsuhashi S; Doi H; Kudo Y; Kishida H; Hayashi N; Tsuburaya RS; Kinoshita M; Fukuyama T; Fukuda H; Koshimizu E; Tsuchida N; Uchiyama Y; Fujita A; Takata A; Miyake N; Kato M; Tanaka F; Adachi H; Matsumoto N
    Brain; 2021 May; 144(4):1103-1117. PubMed ID: 33791773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing.
    Höijer I; Tsai YC; Clark TA; Kotturi P; Dahl N; Stattin EL; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Hum Mutat; 2018 Sep; 39(9):1262-1272. PubMed ID: 29932473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics.
    Chintalaphani SR; Pineda SS; Deveson IW; Kumar KR
    Acta Neuropathol Commun; 2021 May; 9(1):98. PubMed ID: 34034831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell.
    Leung AW; Leung HC; Wong CL; Zheng ZX; Lui WW; Luk HM; Lo IF; Luo R; Lam TW
    BMC Med Genomics; 2022 Mar; 15(1):43. PubMed ID: 35246132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of long repeat expansions from PCR-free whole-genome sequence data.
    Dolzhenko E; van Vugt JJFA; Shaw RJ; Bekritsky MA; van Blitterswijk M; Narzisi G; Ajay SS; Rajan V; Lajoie BR; Johnson NH; Kingsbury Z; Humphray SJ; Schellevis RD; Brands WJ; Baker M; Rademakers R; Kooyman M; Tazelaar GHP; van Es MA; McLaughlin R; Sproviero W; Shatunov A; Jones A; Al Khleifat A; Pittman A; Morgan S; Hardiman O; Al-Chalabi A; Shaw C; Smith B; Neo EJ; Morrison K; Shaw PJ; Reeves C; Winterkorn L; Wexler NS; ; Housman DE; Ng CW; Li AL; Taft RJ; van den Berg LH; Bentley DR; Veldink JH; Eberle MA
    Genome Res; 2017 Nov; 27(11):1895-1903. PubMed ID: 28887402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches to Whole Mitochondrial Genome Sequencing on the Oxford Nanopore MinION.
    Zascavage RR; Hall CL; Thorson K; Mahmoud M; Sedlazeck FJ; Planz JV
    Curr Protoc Hum Genet; 2019 Dec; 104(1):e94. PubMed ID: 31743587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants.
    López-Girona E; Davy MW; Albert NW; Hilario E; Smart MEM; Kirk C; Thomson SJ; Chagné D
    Plant Methods; 2020; 16():121. PubMed ID: 32884578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REViewer: haplotype-resolved visualization of read alignments in and around tandem repeats.
    Dolzhenko E; Weisburd B; Ibañez K; Rajan-Babu IS; Anyansi C; Bennett MF; Billingsley K; Carroll A; Clamons S; Danzi MC; Deshpande V; Ding J; Fazal S; Halman A; Jadhav B; Qiu Y; Richmond PA; Saunders CT; Scheffler K; van Vugt JJFA; Zwamborn RRAJ; ; Chong SS; Friedman JM; Tucci A; Rehm HL; Eberle MA
    Genome Med; 2022 Aug; 14(1):84. PubMed ID: 35948990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
    Kramer NJ; Haney MS; Morgens DW; Jovičić A; Couthouis J; Li A; Ousey J; Ma R; Bieri G; Tsui CK; Shi Y; Hertz NT; Tessier-Lavigne M; Ichida JK; Bassik MC; Gitler AD
    Nat Genet; 2018 Apr; 50(4):603-612. PubMed ID: 29507424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive genotyping of the C9orf72 hexanucleotide repeat region in 2095 ALS samples from the NINDS collection using a two-mode, long-read PCR assay.
    Bram E; Javanmardi K; Nicholson K; Culp K; Thibert JR; Kemppainen J; Le V; Schlageter A; Hadd A; Latham GJ
    Amyotroph Lateral Scler Frontotemporal Degener; 2019 Feb; 20(1-2):107-114. PubMed ID: 30430876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device.
    Hall CL; Kesharwani RK; Phillips NR; Planz JV; Sedlazeck FJ; Zascavage RR
    Forensic Sci Int Genet; 2022 Jan; 56():102629. PubMed ID: 34837788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted genome fragmentation with CRISPR/Cas9 enables fast and efficient enrichment of small genomic regions and ultra-accurate sequencing with low DNA input (CRISPR-DS).
    Nachmanson D; Lian S; Schmidt EK; Hipp MJ; Baker KT; Zhang Y; Tretiakova M; Loubet-Senear K; Kohrn BF; Salk JJ; Kennedy SR; Risques RA
    Genome Res; 2018 Oct; 28(10):1589-1599. PubMed ID: 30232196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the clinical spectrum and the role of repeat length in
    van der Ende EL; Jackson JL; White A; Seelaar H; van Blitterswijk M; Van Swieten JC
    J Neurol Neurosurg Psychiatry; 2021 May; 92(5):502-509. PubMed ID: 33452054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.