BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33831278)

  • 1. Batch and Continuous-Flow Preparation of Biomass-Derived Furfural Acetals over a TiO
    Zhou B; Song F; Ma X; Wang L
    ChemSusChem; 2021 Jun; 14(11):2341-2351. PubMed ID: 33831278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Porous MIL-101(Cr) Solid Acid-Catalyzed Production of Value-Added Acetals from Biomass-Derived Furfural.
    Liu S; Meng Y; Li H; Yang S
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.
    Zhang H; Liu X; Lu M; Hu X; Lu L; Tian X; Ji J
    Bioresour Technol; 2014 Oct; 169():800-803. PubMed ID: 25106779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient solid acid catalyst containing Lewis and Brønsted Acid sites for the production of furfurals.
    Mazzotta MG; Gupta D; Saha B; Patra AK; Bhaumik A; Abu-Omar MM
    ChemSusChem; 2014 Aug; 7(8):2342-50. PubMed ID: 24807741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO
    Zhu Z; Yang L; Ke C; Fan G; Yang L; Li F
    Dalton Trans; 2021 Feb; 50(7):2616-2626. PubMed ID: 33522543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.
    Li H; Ren J; Zhong L; Sun R; Liang L
    Bioresour Technol; 2015 Jan; 176():242-8. PubMed ID: 25461009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO
    Kim M; Su Y; Fukuoka A; Hensen EJM; Nakajima K
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8235-8239. PubMed ID: 29761616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Synthesis of Diesel Precursors from Biomass-Derived Furanics Over Aluminum-Doped Mesoporous Silica Sphere Catalysts.
    Huang YB; Yan XY; Huang ZH; Shan TX; Geng JY; Cao ZH; Lu Q
    ChemSusChem; 2023 Mar; 16(6):e202201677. PubMed ID: 36519750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a Rational Design of a Continuous-Flow Method for the Acetalization of Crude Glycerol: Scope and Limitations of Commercial Amberlyst 36 and AlF₃·3H₂O as Model Catalysts.
    Guidi S; Noè M; Riello P; Perosa A; Selva M
    Molecules; 2016 May; 21(5):. PubMed ID: 27213304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO
    Zhang J; Wang B; Nikolla E; Medlin JW
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6594-6598. PubMed ID: 28471048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.
    Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X
    Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.
    Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F
    ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a stable biochar-supported amorphous aluminum solid acid catalyst with Brønsted-Lewis dual acid sites for efficient conversion of cellulose.
    Feng G; Chen J; Liang B; Zhu Y; Zhang Y; Gan T; Huang Z; Hu H
    Int J Biol Macromol; 2023 May; 237():124196. PubMed ID: 36972830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
    Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R
    Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels.
    Antunes MM; Russo PA; Wiper PV; Veiga JM; Pillinger M; Mafra L; Evtuguin DV; Pinna N; Valente AA
    ChemSusChem; 2014 Mar; 7(3):804-12. PubMed ID: 24497470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step upgrading of bio-based furfural to γ-valerolactone
    Li M; Liu Y; Lin X; Tan J; Yang S; Li H
    RSC Adv; 2021 Oct; 11(56):35415-35424. PubMed ID: 35493184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenation of Furfural to Cyclopentanone under Mild Conditions by a Structure-Optimized Ni-NiO/TiO
    Chen S; Qian TT; Ling LL; Zhang W; Gong BB; Jiang H
    ChemSusChem; 2020 Oct; 13(20):5507-5515. PubMed ID: 32757265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of corncob into furfural by a bifunctional solid acid catalyst.
    Zhang L; Tian L; Sun R; Liu C; Kou Q; Zuo H
    Bioresour Technol; 2019 Mar; 276():60-64. PubMed ID: 30611087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.