BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33831300)

  • 1. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13.
    Lin YY; Li MH; Chang YC; Fu PY; Ohniwa RL; Li HW; Lin JJ
    J Am Chem Soc; 2021 Apr; 143(15):5815-5825. PubMed ID: 33831300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA.
    Nickens DG; Feng Z; Shen J; Gray SJ; Simmons RH; Niu H; Bochman ML
    Nucleic Acids Res; 2024 Jun; 52(11):6317-6332. PubMed ID: 38613387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.
    Mitchell MT; Smith JS; Mason M; Harper S; Speicher DW; Johnson FB; Skordalakes E
    Mol Cell Biol; 2010 Nov; 30(22):5325-34. PubMed ID: 20837709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance.
    Mason M; Wanat JJ; Harper S; Schultz DC; Speicher DW; Johnson FB; Skordalakes E
    Structure; 2013 Jan; 21(1):109-120. PubMed ID: 23177925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13.
    Anderson EM; Halsey WA; Wuttke DS
    Biochemistry; 2003 Apr; 42(13):3751-8. PubMed ID: 12667066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TEN1 is essential for CDC13-mediated telomere capping.
    Xu L; Petreaca RC; Gasparyan HJ; Vu S; Nugent CI
    Genetics; 2009 Nov; 183(3):793-810. PubMed ID: 19752213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of cdc13-2-associated senescence by pif1-m2 requires Ku-mediated telomerase recruitment.
    Fekete-Szücs E; Rosas Bringas FR; Stinus S; Chang M
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34751785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain.
    Lewis KA; Pfaff DA; Earley JN; Altschuler SE; Wuttke DS
    Nucleic Acids Res; 2014 Jan; 42(1):475-84. PubMed ID: 24057216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain.
    Mandell EK; Gelinas AD; Wuttke DS; Lundblad V
    Biochemistry; 2011 Jul; 50(29):6289-91. PubMed ID: 21668015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pif1 Helicase Mediates Remodeling of Protein-Nucleic Acid Complexes by Promoting Dissociation of Sub1 from G-Quadruplex DNA and Cdc13 from G-Rich Single-Stranded DNA.
    Chib S; Griffin WC; Gao J; Proffitt DR; Byrd AK; Raney KD
    Biochemistry; 2023 Dec; 62(23):3360-3372. PubMed ID: 37948114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping.
    Dewar JM; Lydall D
    EMBO J; 2010 Dec; 29(23):4020-34. PubMed ID: 21045806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases.
    Greetham M; Skordalakes E; Lydall D; Connolly BA
    J Mol Biol; 2015 Sep; 427(19):3023-30. PubMed ID: 26264873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function.
    Glustrom LW; Lyon KR; Paschini M; Reyes CM; Parsonnet NV; Toro TB; Lundblad V; Wuttke DS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10315-10320. PubMed ID: 30249661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13.
    Anderson EM; Halsey WA; Wuttke DS
    Nucleic Acids Res; 2002 Oct; 30(19):4305-13. PubMed ID: 12364610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the mechanism of recognition of ssDNA by the Cdc13-DBD.
    Eldridge AM; Wuttke DS
    Nucleic Acids Res; 2008 Mar; 36(5):1624-33. PubMed ID: 18250086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α.
    Sun J; Yang Y; Wan K; Mao N; Yu TY; Lin YC; DeZwaan DC; Freeman BC; Lin JJ; Lue NF; Lei M
    Cell Res; 2011 Feb; 21(2):258-74. PubMed ID: 20877309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres.
    Faure V; Coulon S; Hardy J; Géli V
    Mol Cell; 2010 Jun; 38(6):842-52. PubMed ID: 20620955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication.
    Gopalakrishnan V; Tan CR; Li S
    Cell Cycle; 2017 Jul; 16(13):1271-1287. PubMed ID: 28650257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ten1p promotes the telomeric DNA-binding activity of Cdc13p: implication for its function in telomere length regulation.
    Qian W; Wang J; Jin NN; Fu XH; Lin YC; Lin JJ; Zhou JQ
    Cell Res; 2009 Jul; 19(7):849-63. PubMed ID: 19532124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of MEC1 suppresses the replicative senescence of the cdc13-2 mutant in Saccharomyces cerevisiae.
    Yao Y; Fekete-Szücs E; Rosas Bringas FR; Chang M
    G3 (Bethesda); 2023 May; 13(5):. PubMed ID: 36947417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.