These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33831390)

  • 1. Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases.
    de Godoi Contessoto V; Ramos FC; de Melo RR; de Oliveira VM; Scarpassa JA; de Sousa AS; Zanphorlin LM; Slade GG; Leite VBP; Ruller R
    Biophys J; 2021 Jun; 120(11):2172-2180. PubMed ID: 33831390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Thermostability of Xylanase A from
    Ngo K; Bruno da Silva F; Leite VBP; Contessoto VG; Onuchic JN
    J Phys Chem B; 2021 May; 125(17):4359-4367. PubMed ID: 33887137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions.
    Contessoto VG; de Oliveira VM; Fernandes BR; Slade GG; Leite VBP
    Proteins; 2018 Nov; 86(11):1184-1188. PubMed ID: 30218467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion of a proline-rich oligopeptide to the C-terminus of a ruminal xylanase improves catalytic efficiency.
    Dong R; Liu X; Wang Y; Qin X; Wang X; Zhang H; Wang Y; Luo H; Yao B; Bai Y; Tu T
    Bioengineered; 2022 Apr; 13(4):10482-10492. PubMed ID: 35441569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.
    Kumar V; Dangi AK; Shukla P
    Mol Biotechnol; 2018 Mar; 60(3):226-235. PubMed ID: 29380253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability.
    Chen CC; Luo H; Han X; Lv P; Ko TP; Peng W; Huang CH; Wang K; Gao J; Zheng Y; Yang Y; Zhang J; Yao B; Guo RT
    J Biotechnol; 2014 Nov; 189():175-82. PubMed ID: 25193708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2.
    Ventorim RZ; de Oliveira Mendes TA; Trevizano LM; Dos Santos Camargos AM; Guimarães VM
    Int J Biol Macromol; 2018 Jan; 106():312-319. PubMed ID: 28782612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236.
    Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG
    J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Catalytic Mechanism of a Novel XynA and Structure-Based Engineering for Improving Bifunctional Activities.
    Xie W; Yu Q; Zhang R; Liu Y; Cao R; Wang S; Zhan R; Liu Z; Wang K; Wang C
    Biochemistry; 2021 Jul; 60(26):2071-2083. PubMed ID: 34156819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of xylanases for the development of biotechnologically important characteristics.
    Sürmeli Y; Şanlı-Mohamed G
    Biotechnol Bioeng; 2023 May; 120(5):1171-1188. PubMed ID: 36715367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostabilization of Bacillus subtilis GH11 xylanase by surface charge engineering.
    Alponti JS; Fonseca Maldonado R; Ward RJ
    Int J Biol Macromol; 2016 Jun; 87():522-8. PubMed ID: 26955749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosyl hydrolase 11 (xynA) gene with xylanase activity from thermophilic bacteria isolated from thermal springs.
    Joshi JB; Priyadharshini R; Uthandi S
    Microb Cell Fact; 2022 Apr; 21(1):62. PubMed ID: 35428308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability.
    Beliën T; Joye IJ; Delcour JA; Courtin CM
    Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Approaches for Microbial Xylanases: Recent Advances and Perspectives.
    Basu M; Kumar V; Shukla P
    Curr Protein Pept Sci; 2018; 19(1):87-99. PubMed ID: 27875966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production, characteristics, and biotechnological applications of microbial xylanases.
    Alokika ; Singh B
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8763-8784. PubMed ID: 31641815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756.
    de Souza AR; de Araújo GC; Zanphorlin LM; Ruller R; Franco FC; Torres FA; Mertens JA; Bowman MJ; Gomes E; Da Silva R
    Int J Biol Macromol; 2016 Dec; 93(Pt A):20-26. PubMed ID: 27554938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial xylanases: engineering, production and industrial applications.
    Juturu V; Wu JC
    Biotechnol Adv; 2012; 30(6):1219-27. PubMed ID: 22138412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress in the thermophilic and alkalophilic xylanases].
    Bai W; Wang Q; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):828-37. PubMed ID: 25212001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.
    Kumar V; Marín-Navarro J; Shukla P
    World J Microbiol Biotechnol; 2016 Feb; 32(2):34. PubMed ID: 26754672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics.
    Li Q; Sun B; Jia H; Hou J; Yang R; Xiong K; Xu Y; Li X
    Int J Biol Macromol; 2017 Aug; 101():366-372. PubMed ID: 28356235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.