These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 33831477)

  • 61. Rising role of 3D-printing in delivery of therapeutics for infectious disease.
    Kyser AJ; Fotouh B; Mahmoud MY; Frieboes HB
    J Control Release; 2024 Feb; 366():349-365. PubMed ID: 38182058
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 3D Printing Technology in Design of Pharmaceutical Products.
    Ameeduzzafar ; Alruwaili NK; Rizwanullah M; Abbas Bukhari SN; Amir M; Ahmed MM; Fazil M
    Curr Pharm Des; 2018; 24(42):5009-5018. PubMed ID: 30652636
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Additive Manufacturing of Precision Biomaterials.
    Guzzi EA; Tibbitt MW
    Adv Mater; 2020 Apr; 32(13):e1901994. PubMed ID: 31423679
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures.
    Velasco-Hogan A; Xu J; Meyers MA
    Adv Mater; 2018 Dec; 30(52):e1800940. PubMed ID: 30133816
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Polymeric-based drug delivery systems for veterinary use: State of the art.
    Carvalho SG; Silvestre ALP; Martins Dos Santos A; Fonseca-Santos B; Rodrigues WD; Palmira Daflon Gremião M; Chorilli M; Villanova JCO
    Int J Pharm; 2021 Jul; 604():120756. PubMed ID: 34058307
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3D-Printed Network Structures as Controlled-Release Drug Delivery Systems: Dose Adjustment, API Release Analysis and Prediction.
    Korte C; Quodbach J
    AAPS PharmSciTech; 2018 Nov; 19(8):3333-3342. PubMed ID: 29855799
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry.
    Revilla-León M; Özcan M
    J Prosthodont; 2019 Feb; 28(2):146-158. PubMed ID: 29682823
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Additive manufacturing of polymer melts for implantable medical devices and scaffolds.
    Youssef A; Hollister SJ; Dalton PD
    Biofabrication; 2017 Feb; 9(1):012002. PubMed ID: 28245199
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering.
    Wu Y; Lu Y; Zhao M; Bosiakov S; Li L
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631999
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends.
    Taormina G; Sciancalepore C; Messori M; Bondioli F
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):151-160. PubMed ID: 29609487
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Additive manufacturing techniques for the production of tissue engineering constructs.
    Mota C; Puppi D; Chiellini F; Chiellini E
    J Tissue Eng Regen Med; 2015 Mar; 9(3):174-90. PubMed ID: 23172792
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review.
    Duan X; Chen HL; Guo C
    J Mater Sci Mater Med; 2022 Dec; 33(12):78. PubMed ID: 36462118
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Application of Micro-Scale 3D Printing in Pharmaceutics.
    Kjar A; Huang Y
    Pharmaceutics; 2019 Aug; 11(8):. PubMed ID: 31382565
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.
    Zhang J; Feng X; Patil H; Tiwari RV; Repka MA
    Int J Pharm; 2017 Mar; 519(1-2):186-197. PubMed ID: 28017768
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Printing technologies in fabrication of drug delivery systems.
    Kolakovic R; Viitala T; Ihalainen P; Genina N; Peltonen J; Sandler N
    Expert Opin Drug Deliv; 2013 Dec; 10(12):1711-23. PubMed ID: 24256326
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of 3D Printing in the Development of Biodegradable Implants for Central Nervous System Drug Delivery.
    Kutlehria S; D'Souza A; Bleier BS; Amiji MM
    Mol Pharm; 2022 Dec; 19(12):4411-4427. PubMed ID: 36154128
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery.
    Xu X; Goyanes A; Trenfield SJ; Diaz-Gomez L; Alvarez-Lorenzo C; Gaisford S; Basit AW
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111773. PubMed ID: 33545904
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Additive-manufactured microporous polymer membranes for biomedical in vitro applications.
    Düregger K; Trik S; Leonhardt S; Eblenkamp M
    J Biomater Appl; 2018 Jul; 33(1):116-126. PubMed ID: 29874967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.