BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33831752)

  • 1. Spiropyran-based photoswitchable acrylic nanofibers: A stimuli-responsive substrate for light controlled C6 glioma cells attachment/detachment.
    Karimipour K; Keyvan Rad J; Shirvalilou S; Khoei S; Mahdavian AR
    Colloids Surf B Biointerfaces; 2021 Jul; 203():111731. PubMed ID: 33831752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer.
    He D; Arisaka Y; Masuda K; Yamamoto M; Takeda N
    Acta Biomater; 2017 Mar; 51():101-111. PubMed ID: 28110068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers.
    Nezhadghaffar-Borhani E; Abdollahi A; Roghani-Mamaqani H; Salami-Kalajahi M
    J Colloid Interface Sci; 2021 Jul; 593():67-78. PubMed ID: 33744553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery.
    Razavi B; Abdollahi A; Roghani-Mamaqani H; Salami-Kalajahi M
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110524. PubMed ID: 32228960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes.
    Higuchi A; Hamamura A; Shindo Y; Kitamura H; Yoon BO; Mori T; Uyama T; Umezawa A
    Biomacromolecules; 2004; 5(5):1770-4. PubMed ID: 15360286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Photoswitchable Polyacrylic Nanocomposite Fibers Containing Au Nanorods and Spiropyran: Optical and Plasmonic Properties.
    Keyvan Rad J; Ghomi AR; Mahdavian AR
    Langmuir; 2022 Jul; 38(27):8428-8441. PubMed ID: 35758020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of spiropyran with methacrylate at the benzopyran moiety and control of the water repellency and cell adhesion of its polymer film.
    Murase N; Ando T; Ajiro H
    J Mater Chem B; 2020 Feb; 8(7):1489-1495. PubMed ID: 31998931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-, thermally, and pH-responsive microgels.
    Garcia A; Marquez M; Cai T; Rosario R; Hu Z; Gust D; Hayes M; Vail SA; Park CD
    Langmuir; 2007 Jan; 23(1):224-9. PubMed ID: 17190508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of stimuli-responsive functionalized latex nanoparticles: the effect of spiropyran concentration on size and photochromic properties.
    Abdollahi A; Mahdavian AR; Salehi-Mobarakeh H
    Langmuir; 2015 Oct; 31(39):10672-82. PubMed ID: 26375595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoswitchable ratchet surface topographies based on self-protonating spiropyran-NIPAAM hydrogels.
    Stumpel JE; Ziółkowski B; Florea L; Diamond D; Broer DJ; Schenning AP
    ACS Appl Mater Interfaces; 2014 May; 6(10):7268-74. PubMed ID: 24813057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers.
    Hu C; Xu W; Conrads CM; Wu J; Pich A
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1075-1084. PubMed ID: 32932178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV/vis and NIR light-responsive spiropyran self-assembled monolayers.
    Ivashenko O; van Herpt JT; Feringa BL; Rudolf P; Browne WR
    Langmuir; 2013 Apr; 29(13):4290-7. PubMed ID: 23461631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreversible fluorescent modulation of nanoparticles via one-step miniemulsion polymerization.
    Chen J; Zeng F; Wu S; Su J; Tong Z
    Small; 2009 Apr; 5(8):970-8. PubMed ID: 19235194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoswitchable Composite Polymer Electrolytes Using Spiropyran-Immobilized Nanoporous Templates.
    Lin YL; Tseng YH; Ho JH; Chen YF; Chen JT
    Chemistry; 2021 Oct; 27(60):14981-14988. PubMed ID: 34369018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiropyran-conjugated pluronic as a dual responsive colorimetric detector.
    Oh YJ; Nam JA; Al-Nahain A; Lee S; In I; Park SY
    Macromol Rapid Commun; 2012 Nov; 33(22):1958-63. PubMed ID: 22907706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoresponsive Spiropyran and DEGMA-Based Copolymers with Photo-Switchable Glass Transition Temperatures.
    Pruthi V; Akae Y; Théato P
    Macromol Rapid Commun; 2023 Oct; 44(19):e2300270. PubMed ID: 37358931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Chain Parameters on Kinetics of Photochromism in Acrylic-Spiropyran Copolymer Nanoparticles and Their Reversible Optical Data Storage.
    Sharifian MH; Mahdavian AR; Salehi-Mobarakeh H
    Langmuir; 2017 Aug; 33(32):8023-8031. PubMed ID: 28735543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemo- and biosensing applications of spiropyran and its derivatives - A review.
    Ali AA; Kharbash R; Kim Y
    Anal Chim Acta; 2020 May; 1110():199-223. PubMed ID: 32278396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication.
    Wang Y; Hong CY; Pan CY
    Biomacromolecules; 2012 Aug; 13(8):2585-93. PubMed ID: 22759087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations.
    Shiraishi Y; Shirakawa E; Tanaka K; Sakamoto H; Ichikawa S; Hirai T
    ACS Appl Mater Interfaces; 2014 May; 6(10):7554-62. PubMed ID: 24746341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.