These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33832264)

  • 1. Semi-grand canonical Monte Carlo simulation of the acrolein induced surface segregation and aggregation of AgPd with machine learning surrogate models.
    Liu M; Yang Y; Kitchin JR
    J Chem Phys; 2021 Apr; 154(13):134701. PubMed ID: 33832264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction.
    Guo L; Chen F; Jin T; Liu H; Zhang N; Jin Y; Wang Q; Tang Q; Pan B
    Nanoscale; 2020 Feb; 12(5):3469-3481. PubMed ID: 31990278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface composition of AgPd single-atom alloy catalyst in an oxidative environment.
    Hartwig C; Schweinar K; Nicholls R; Beeg S; Schlögl R; Greiner M
    J Chem Phys; 2021 May; 154(17):174708. PubMed ID: 34241061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.
    O'Brien CP; Dostert KH; Schauermann S; Freund HJ
    Chemistry; 2016 Oct; 22(44):15856-15863. PubMed ID: 27621113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning.
    Salem M; Cowan MJ; Mpourmpakis G
    ACS Omega; 2022 Feb; 7(5):4471-4481. PubMed ID: 35155939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimetallic nanostructures: the case of AgPd-Pt multiply twinned nanoparticles.
    Khanal S; Bhattarai N; Velázquez-Salazar JJ; Bahena D; Soldano G; Ponce A; Mariscal MM; Mejía-Rosales S; José-Yacamán M
    Nanoscale; 2013 Dec; 5(24):12456-63. PubMed ID: 24165796
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Li XT; Chen L; Shang C; Liu ZP
    J Am Chem Soc; 2021 Apr; 143(16):6281-6292. PubMed ID: 33874723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green dual-template synthesis of AgPd core-shell nanoparticles with enhanced electrocatalytic activity.
    Liu H; Li L; Luo L; He Y; Cong C; He Y; Hao Z; Gao D
    Nanotechnology; 2020 Jan; 31(3):035603. PubMed ID: 31557747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface segregation of Au-Pd alloys in UHV and reactive environments: quantification by a catalytic atom probe.
    de Bocarmé TV; Moors M; Kruse N; Atanasov IS; Hou M; Cerezo A; Smith GD
    Ultramicroscopy; 2009 Apr; 109(5):619-24. PubMed ID: 19135308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantageous Interfacial Effects of AgPd/g-C
    Zou W; Xu L; Pu Y; Cai H; Wei X; Luo Y; Li L; Gao B; Wan H; Dong L
    Chemistry; 2019 Apr; 25(19):5058-5064. PubMed ID: 30719734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and composition dependent structural evolution of AgPd bimetallic nanoparticle: phase diagram of (AgPd)151 nanoparticle.
    Kim HY; Kim DH; Lee HM
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2251-5. PubMed ID: 21449376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectators Control Selectivity in Surface Chemistry: Acrolein Partial Hydrogenation Over Pd.
    Dostert KH; O'Brien CP; Ivars-Barceló F; Schauermann S; Freund HJ
    J Am Chem Soc; 2015 Oct; 137(42):13496-502. PubMed ID: 26481220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo.
    Jørgensen M; Grönbeck H
    J Am Chem Soc; 2019 May; 141(21):8541-8549. PubMed ID: 31063683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene.
    Zhou S; Shang L; Zhao Y; Shi R; Waterhouse GIN; Huang YC; Zheng L; Zhang T
    Adv Mater; 2019 May; 31(18):e1900509. PubMed ID: 30873691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface quantum trap depression and charge polarization in the CuPd and AgPd bimetallic alloy catalysts.
    Sun CQ; Wang Y; Nie YG; Mehta BR; Khanuja M; Shivaprasad SM; Sun Y; Pan JS; Pan LK; Sun Z
    Phys Chem Chem Phys; 2010 Apr; 12(13):3131-5. PubMed ID: 20237700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous Graphitic Carbon Nitride/Black Phosphorus/AgPd Alloy Nanoparticles Ternary Nanocomposite: A Highly Efficient Catalyst for the Methanolysis of Ammonia Borane.
    Eken Korkut S; Küçükkeçeci H; Metin Ö
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8130-8139. PubMed ID: 31983206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of gas adsorption on a surface and in slit pores with grand canonical and canonical kinetic Monte Carlo methods.
    Ustinov EA; Do DD
    Phys Chem Chem Phys; 2012 Aug; 14(31):11112-8. PubMed ID: 22767023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt-Pd alloys.
    Duan Z; Wang G
    J Phys Condens Matter; 2011 Nov; 23(47):475301. PubMed ID: 22075765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Adsorbed and Subsurface Carbon Species for the Selective Alkyne Hydrogenation Over a Pd-Black Catalyst: An
    Velasco-Vélez JJ; Teschner D; Girgsdies F; Hävecker M; Streibel V; Willinger MG; Cao J; Lamoth M; Frei E; Wang R; Centeno A; Zurutuza A; Hofmann S; Schlögl R; Knop-Gericke A
    Top Catal; 2018; 61(20):2052-2061. PubMed ID: 30930589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacancy assisted diffusion on single-atom surface alloys.
    Mahlberg D; Groß A
    Chemphyschem; 2021 Jan; 22(1):29-39. PubMed ID: 33197083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.