These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33832846)

  • 1. Towards detection of inflammation in adipose tissue: Microscopic field simulations to estimate water signal properties.
    Fischer A; Schick F
    Z Med Phys; 2021 Nov; 31(4):394-402. PubMed ID: 33832846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new concept for improved quantitative analysis of reversible transverse relaxation in tissues with variable microscopic field distribution.
    Steidle G; Schick F
    Magn Reson Med; 2021 Mar; 85(3):1493-1506. PubMed ID: 33000529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of microscopic susceptibility gradients on chemical-shift-based fat fraction quantification in supraclavicular fat.
    McCallister D; Zhang L; Burant A; Katz L; Branca RT
    J Magn Reson Imaging; 2019 Jan; 49(1):141-151. PubMed ID: 30284347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique.
    Hardy PA; Hinks RS; Tkach JA
    J Magn Reson Imaging; 1995; 5(2):181-5. PubMed ID: 7766980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a phantom to compare MR techniques for determining the ratio of intraabdominal to subcutaneous adipose tissue.
    Donnelly LF; O'Brien KJ; Dardzinski BJ; Poe SA; Bean JA; Holland SK; Daniels SR
    AJR Am J Roentgenol; 2003 Apr; 180(4):993-8. PubMed ID: 12646443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR imaging of fat-containing tissues: valuation of two quantitative imaging techniques in comparison with localized proton spectroscopy.
    Brix G; Heiland S; Bellemann ME; Koch T; Lorenz WJ
    Magn Reson Imaging; 1993; 11(7):977-91. PubMed ID: 8231682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of
    Cai Z; Yi P; Tao Q; Feng Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 May; 41(5):783-788. PubMed ID: 34134968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments.
    De Guio F; Benoit-Cattin H; Davenel A
    MAGMA; 2008 Jul; 21(4):261-71. PubMed ID: 18575911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping brown adipose tissue based on fat water fraction provided by Z-spectral imaging.
    Scotti A; Tain RW; Li W; Gil V; Liew CW; Cai K
    J Magn Reson Imaging; 2018 Jun; 47(6):1527-1533. PubMed ID: 29148120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate fatty acid composition estimation of adipose tissue in the abdomen based on bipolar multi-echo MRI.
    Schneider M; Janas G; Lugauer F; Hoppe E; Nickel D; Dale BM; Kiefer B; Maier A; Bashir MR
    Magn Reson Med; 2019 Apr; 81(4):2330-2346. PubMed ID: 30368904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging.
    Korinek R; Bartusek K; Starcuk Z
    Magn Reson Imaging; 2017 Apr; 37():164-170. PubMed ID: 27890779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of intrahepatic lipids using fat-selective imaging with spectral-spatial excitation and in-/opposed-phase gradient echo imaging techniques within a study population of extremely obese patients: feasibility on a short, wide-bore MR scanner.
    Springer F; Machann J; Schwenzer NF; Ballweg V; Würslin C; Schneider JH; Fritsche A; Claussen CD; Schick F
    Invest Radiol; 2010 Aug; 45(8):484-90. PubMed ID: 20479651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR fingerprinting with simultaneous T
    Ostenson J; Damon BM; Welch EB
    Magn Reson Imaging; 2019 Jul; 60():7-19. PubMed ID: 30910696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid (iron-fat-water) phantom for liver iron overload quantification in the presence of contaminating fat using magnetic resonance imaging.
    Mobini N; Malekzadeh M; Haghighatkhah H; Saligheh Rad H
    MAGMA; 2020 Jun; 33(3):385-392. PubMed ID: 31732894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust water-fat separation for multi-echo gradient-recalled echo sequence using convolutional neural network.
    Cho J; Park H
    Magn Reson Med; 2019 Jul; 82(1):476-484. PubMed ID: 30790344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal and renal sinus fat volumes as quantified by magnetic resonance imaging in subjects with prediabetes, diabetes, and normal glucose tolerance.
    Notohamiprodjo M; Goepfert M; Will S; Lorbeer R; Schick F; Rathmann W; Martirosian P; Peters A; Müller-Peltzer K; Helck A; Rospleszcz S; Bamberg F
    PLoS One; 2020; 15(2):e0216635. PubMed ID: 32074103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible fast spin echo triple-echo Dixon technique.
    Son JB; Hwang KP; Madewell JE; Bayram E; Hazle JD; Low RN; Ma J
    Magn Reson Med; 2017 Mar; 77(3):1049-1057. PubMed ID: 26982770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravascular susceptibility contrast mechanisms in tissues.
    Kennan RP; Zhong J; Gore JC
    Magn Reson Med; 1994 Jan; 31(1):9-21. PubMed ID: 8121277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of spin coupling signal loss on fat content characterization in multi-echo acquisitions with different echo spacing.
    Nikiforaki K; Manikis GC; Boursianis T; Marias K; Karantanas A; Maris TG
    Magn Reson Imaging; 2017 May; 38():6-12. PubMed ID: 27986542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral characterization of tissues in high spectral and spatial resolution MR images: Implications for a classification-based synthetic CT algorithm.
    Wood AM; Shea SM; Medved M; Karczmar GS; Surucu M; Gros S; Small W; Roeske J
    Med Phys; 2017 May; 44(5):1865-1875. PubMed ID: 28236649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.