BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33832990)

  • 1. Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning.
    Atak ZK; Taskiran II; Demeulemeester J; Flerin C; Mauduit D; Minnoye L; Hulselmans G; Christiaens V; Ghanem GE; Wouters J; Aerts S
    Genome Res; 2021 Jun; 31(6):1082-1096. PubMed ID: 33832990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-species analysis of enhancer logic using deep learning.
    Minnoye L; Taskiran II; Mauduit D; Fazio M; Van Aerschot L; Hulselmans G; Christiaens V; Makhzami S; Seltenhammer M; Karras P; Primot A; Cadieu E; van Rooijen E; Marine JC; Egidy G; Ghanem GE; Zon L; Wouters J; Aerts S
    Genome Res; 2020 Dec; 30(12):1815-1834. PubMed ID: 32732264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Screening of Promoter Regions Pinpoints Functional Cis-Regulatory Mutations in a Cutaneous Melanoma Genome.
    Poulos RC; Thoms JA; Shah A; Beck D; Pimanda JE; Wong JW
    Mol Cancer Res; 2015 Aug; 13(8):1218-26. PubMed ID: 26082173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allelic Imbalance in Regulation of ANRIL through Chromatin Interaction at 9p21 Endometriosis Risk Locus.
    Nakaoka H; Gurumurthy A; Hayano T; Ahmadloo S; Omer WH; Yoshihara K; Yamamoto A; Kurose K; Enomoto T; Akira S; Hosomichi K; Inoue I
    PLoS Genet; 2016 Apr; 12(4):e1005893. PubMed ID: 27055116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organizing maps with variable neighborhoods facilitate learning of chromatin accessibility signal shapes associated with regulatory elements.
    Eicher T; Chan J; Luu H; Machiraju R; Mathé EA
    BMC Bioinformatics; 2021 Jan; 22(1):35. PubMed ID: 33516170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.
    Light N; Adoue V; Ge B; Chen SH; Kwan T; Pastinen T
    Epigenetics; 2014 Sep; 9(9):1238-51. PubMed ID: 25055051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative prediction of gene expression with chromatin accessibility and conformation data.
    Schmidt F; Kern F; Schulz MH
    Epigenetics Chromatin; 2020 Feb; 13(1):4. PubMed ID: 32029002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
    Li Y; Shi W; Wasserman WW
    BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting functional variants in enhancer and promoter elements using RegulomeDB.
    Dong S; Boyle AP
    Hum Mutat; 2019 Sep; 40(9):1292-1298. PubMed ID: 31228310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation.
    Brennan KJ; Weilert M; Krueger S; Pampari A; Liu HY; Yang AWH; Morrison JA; Hughes TR; Rushlow CA; Kundaje A; Zeitlinger J
    Dev Cell; 2023 Oct; 58(19):1898-1916.e9. PubMed ID: 37557175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.
    Chen CY; Morris Q; Mitchell JA
    BMC Genomics; 2012 Apr; 13():152. PubMed ID: 22537144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions.
    Bolouri H; Ruzzo WL
    J Comput Biol; 2012 Sep; 19(9):989-97. PubMed ID: 22897152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining artificial intelligence: deep learning with Hi-C data to predict the functional effects of non-coding variants.
    Meng XH; Xiao HM; Deng HW
    Bioinformatics; 2021 Jun; 37(10):1339-1344. PubMed ID: 33196774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification.
    Hoffman GE; Bendl J; Girdhar K; Schadt EE; Roussos P
    Nucleic Acids Res; 2019 Nov; 47(20):10597-10611. PubMed ID: 31544924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.