These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33833098)

  • 21. Photobiocatalytic Decarboxylation for the Synthesis of Fatty Epoxides from Renewable Fatty Acids.
    Ge R; Zhang P; Dong X; Li Y; Sun Z; Zeng Y; Chen B; Zhang W
    ChemSusChem; 2022 Oct; 15(20):e202201275. PubMed ID: 36036214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO2 migration pathways in oxalate decarboxylase and clues about its active site.
    Karmakar T; Periyasamy G; Balasubramanian S
    J Phys Chem B; 2013 Oct; 117(41):12451-60. PubMed ID: 24053484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic insights into the catalytic reaction of ferulic acid decarboxylase from Aspergillus niger: a QM/MM study.
    Tian G; Liu Y
    Phys Chem Chem Phys; 2017 Mar; 19(11):7733-7742. PubMed ID: 28262890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Reconstructed Common Ancestor of the Fatty Acid Photo-decarboxylase Clade Shows Photo-decarboxylation Activity and Increased Thermostability.
    Sun Y; Calderini E; Kourist R
    Chembiochem; 2021 May; 22(10):1833-1840. PubMed ID: 33539041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UbiD domain dynamics underpins aromatic decarboxylation.
    Marshall SA; Payne KAP; Fisher K; Titchiner GR; Levy C; Hay S; Leys D
    Nat Commun; 2021 Aug; 12(1):5065. PubMed ID: 34417452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase.
    Xu S; Li W; Zhu J; Wang R; Li Z; Xu GL; Ding J
    Cell Res; 2013 Nov; 23(11):1296-309. PubMed ID: 23917530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen Rebound Chemistry.
    Hsieh CH; Huang X; Amaya JA; Rutland CD; Keys CL; Groves JT; Austin RN; Makris TM
    Biochemistry; 2017 Jul; 56(26):3347-3357. PubMed ID: 28603981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleT
    Fang B; Xu H; Liu Y; Qi F; Zhang W; Chen H; Wang C; Wang Y; Yang W; Li S
    Sci Rep; 2017 Mar; 7():44258. PubMed ID: 28276499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.
    Misra N; Patra MC; Panda PK; Sukla LB; Mishra BK
    J Biomol Struct Dyn; 2013 Mar; 31(3):241-57. PubMed ID: 22830394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism.
    Rodríguez H; Angulo I; de Las Rivas B; Campillo N; Páez JA; Muñoz R; Mancheño JM
    Proteins; 2010 May; 78(7):1662-76. PubMed ID: 20112419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae.
    Bhuiya MW; Lee SG; Jez JM; Yu O
    Appl Environ Microbiol; 2015 Jun; 81(12):4216-23. PubMed ID: 25862228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-resolved serial femtosecond crystallography on fatty-acid photodecarboxylase: lessons learned.
    Hadjidemetriou K; Coquelle N; Barends TRM; De Zitter E; Schlichting I; Colletier JP; Weik M
    Acta Crystallogr D Struct Biol; 2022 Sep; 78(Pt 9):1131-1142. PubMed ID: 36048153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decarboxylation involving a ferryl, propionate, and a tyrosyl group in a radical relay yields heme
    Streit BR; Celis AI; Moraski GC; Shisler KA; Shepard EM; Rodgers KR; Lukat-Rodgers GS; DuBois JL
    J Biol Chem; 2018 Mar; 293(11):3989-3999. PubMed ID: 29414780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis.
    Marshall SA; Fisher K; Ní Cheallaigh A; White MD; Payne KA; Parker DA; Rigby SE; Leys D
    J Biol Chem; 2017 Mar; 292(11):4623-4637. PubMed ID: 28057757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling.
    Huo L; Liu F; Iwaki H; Li T; Hasegawa Y; Liu A
    Proteins; 2015 Jan; 83(1):178-87. PubMed ID: 25392945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can a Mononuclear Iron(III)-Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels?
    Lin YT; Stańczak A; Manchev Y; Straganz GD; de Visser SP
    Chemistry; 2020 Feb; 26(10):2233-2242. PubMed ID: 31584704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition.
    Payne KA; White MD; Fisher K; Khara B; Bailey SS; Parker D; Rattray NJ; Trivedi DK; Goodacre R; Beveridge R; Barran P; Rigby SE; Scrutton NS; Hay S; Leys D
    Nature; 2015 Jun; 522(7557):497-501. PubMed ID: 26083754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.