BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 33833373)

  • 1. A study of transposable element-associated structural variations (TASVs) using a de novo-assembled Korean genome.
    Mun S; Kim S; Lee W; Kang K; Meyer TJ; Han BG; Han K; Kim HS
    Exp Mol Med; 2021 Apr; 53(4):615-630. PubMed ID: 33833373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo assembly and phasing of a Korean human genome.
    Seo JS; Rhie A; Kim J; Lee S; Sohn MH; Kim CU; Hastie A; Cao H; Yun JY; Kim J; Kuk J; Park GH; Kim J; Ryu H; Kim J; Roh M; Baek J; Hunkapiller MW; Korlach J; Shin JY; Kim C
    Nature; 2016 Oct; 538(7624):243-247. PubMed ID: 27706134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements.
    McCoy RC; Taylor RW; Blauwkamp TA; Kelley JL; Kertesz M; Pushkarev D; Petrov DA; Fiston-Lavier AS
    PLoS One; 2014; 9(9):e106689. PubMed ID: 25188499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.
    Sveinsson S; Gill N; Kane NC; Cronk Q
    BMC Genomics; 2013 Jul; 14():502. PubMed ID: 23883295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Race in a genome: long read sequencing, ethnicity-specific reference genomes and the shifting horizon of race.
    Kowal E; Llamas B
    J Anthropol Sci; 2019 Dec; 96():91-106. PubMed ID: 31589588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations.
    Wong KHY; Levy-Sakin M; Kwok PY
    Nat Commun; 2018 Aug; 9(1):3040. PubMed ID: 30072691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile elements create structural variation: analysis of a complete human genome.
    Xing J; Zhang Y; Han K; Salem AH; Sen SK; Huff CD; Zhou Q; Kirkness EF; Levy S; Batzer MA; Jorde LB
    Genome Res; 2009 Sep; 19(9):1516-26. PubMed ID: 19439515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human-specific AluS elements through comparative genomics.
    Lee J; Kim YJ; Mun S; Kim HS; Han K
    Gene; 2015 Jan; 555(2):208-16. PubMed ID: 25447892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies.
    Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z
    Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TE-Tracker: systematic identification of transposition events through whole-genome resequencing.
    Gilly A; Etcheverry M; Madoui MA; Guy J; Quadrana L; Alberti A; Martin A; Heitkam T; Engelen S; Labadie K; Le Pen J; Wincker P; Colot V; Aury JM
    BMC Bioinformatics; 2014 Nov; 15(1):377. PubMed ID: 25408240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40.
    Umemura M; Koyama Y; Takeda I; Hagiwara H; Ikegami T; Koike H; Machida M
    PLoS One; 2013; 8(5):e63673. PubMed ID: 23667655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TERAD: Extraction of transposable element composition from RADseq data.
    Chak STC; Rubenstein DR
    Mol Ecol Resour; 2019 Nov; 19(6):1681-1688. PubMed ID: 31479576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KoVariome: Korean National Standard Reference Variome database of whole genomes with comprehensive SNV, indel, CNV, and SV analyses.
    Kim J; Weber JA; Jho S; Jang J; Jun J; Cho YS; Kim HM; Kim H; Kim Y; Chung O; Kim CG; Lee H; Kim BC; Han K; Koh I; Chae KS; Lee S; Edwards JS; Bhak J
    Sci Rep; 2018 Apr; 8(1):5677. PubMed ID: 29618732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly.
    Li Y; Zheng H; Luo R; Wu H; Zhu H; Li R; Cao H; Wu B; Huang S; Shao H; Ma H; Zhang F; Feng S; Zhang W; Du H; Tian G; Li J; Zhang X; Li S; Bolund L; Kristiansen K; de Smith AJ; Blakemore AI; Coin LJ; Yang H; Wang J; Wang J
    Nat Biotechnol; 2011 Jul; 29(8):723-30. PubMed ID: 21785424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposon Insertion Finder (TIF): a novel program for detection of de novo transpositions of transposable elements.
    Nakagome M; Solovieva E; Takahashi A; Yasue H; Hirochika H; Miyao A
    BMC Bioinformatics; 2014 Mar; 15():71. PubMed ID: 24629057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Misassembly of long reads undermines de novo-assembled ethnicity-specific genomes: validation in a Chinese Han population.
    Mai Z; Liu W; Ding W; Zhang G
    Hum Genet; 2019 Jul; 138(7):757-769. PubMed ID: 31168775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny.
    Pucker B; Holtgräwe D; Rosleff Sörensen T; Stracke R; Viehöver P; Weisshaar B
    PLoS One; 2016; 11(10):e0164321. PubMed ID: 27711162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposable Elements: No More 'Junk DNA'.
    Kim YJ; Lee J; Han K
    Genomics Inform; 2012 Dec; 10(4):226-33. PubMed ID: 23346034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considering transposable element diversification in de novo annotation approaches.
    Flutre T; Duprat E; Feuillet C; Quesneville H
    PLoS One; 2011 Jan; 6(1):e16526. PubMed ID: 21304975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.