These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33833640)

  • 21. Phase Field Study of the Microstructural Dynamic Evolution and Mechanical Response of NiTi Shape Memory Alloy under Mechanical Loading.
    Xi S; Su Y
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.
    Bondar V; Danilchenko V; Dzevin I
    Nanoscale Res Lett; 2016 Dec; 11(1):96. PubMed ID: 26897002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Formation Mechanism of Nanocrystals after Martensitic Transformation.
    Li SJ; Su SL; Hu GJ; Zhao Q; Wei ZY; Tian Y; Wang CD; Lu X; Ping DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hysteretic structural changes within five-layered modulated 10M martensite of Ni-Mn-Ga(-Fe).
    Veřtát P; Seiner H; Straka L; Klicpera M; Sozinov A; Fabelo O; Heczko O
    J Phys Condens Matter; 2021 May; 33(26):. PubMed ID: 33902013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of compatible microstructure by electron backscatter diffraction.
    Chapman M; De Graef M; James RD; Chen X
    Philos Trans A Math Phys Eng Sci; 2021 Jul; 379(2201):20200112. PubMed ID: 34024127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deformation twinning in Ni-Mn-Ga micropillars with 10M martensite.
    Reinhold M; Kiener D; Knowlton WB; Dehm G; Müllner P
    J Appl Phys; 2009 Sep; 106(5):53906. PubMed ID: 19859577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.
    Sathe VG; Dubey A; Banik S; Barman SR; Olivi L
    J Phys Condens Matter; 2013 Jan; 25(4):046001. PubMed ID: 23238326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between the Tensile Properties and Damping Capacity of Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si Alloys by Fatigue Stress.
    Kim JH; Lee MS; Kim JS
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallography and Microstructure of 7M Martensite in Ni-Mn-Ga Thin Films Epitaxially Grown on (1 1 2¯ 0)-Oriented Al
    Yang B; Li Z; Yan H; Zhang Y; Esling C; Zhao X; Zuo L
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni-Cu-Co-Mn-In microwire.
    Chen Z; Cong D; Sun X; Zhang Y; Yan H; Li S; Li R; Nie Z; Ren Y; Wang Y
    IUCrJ; 2019 Sep; 6(Pt 5):843-853. PubMed ID: 31576218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetism of nanotwinned martensite in magnetic shape memory alloys.
    Golub V; L'vov VA; Salyuk O; Barandiaran JM; Chernenko VA
    J Phys Condens Matter; 2020 May; 32(31):. PubMed ID: 32163928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys.
    D'Souza SW; Roy T; Barman SR; Chakrabarti A
    J Phys Condens Matter; 2014 Dec; 26(50):506001. PubMed ID: 25419566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Twinning behavior of orthorhombic-α" martensite in a Ti-7.5Mo alloy.
    Ji X; Gutierrez-Urrutia I; Emura S; Liu T; Hara T; Min X; Ping D; Tsuchiya K
    Sci Technol Adv Mater; 2019; 20(1):401-411. PubMed ID: 31105803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Shape Memory Effect of a Fe-Mn-Si-Cr-Ni Alloy through Shot Peening.
    Yang H; Yan W; Deng X; Zhang M; Wang Y
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase determination in dual phase steels via HREBSD-based tetragonality mapping.
    Adams D; Miles MP; Homer ER; Brown T; Mishra RK; Fullwood DT
    J Microsc; 2021 Apr; 282(1):60-72. PubMed ID: 33226120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.
    Seol JB; Lee BH; Choi P; Lee SG; Park CG
    Ultramicroscopy; 2013 Sep; 132():248-57. PubMed ID: 23537886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and Phase Transformations and Physical and Mechanical Properties of Cu-Al-Ni Shape Memory Alloys Subjected to Severe Plastic Deformation and Annealing.
    Svirid AE; Pushin VG; Kuranova NN; Makarov VV; Ustyugov YM
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Martensitic transformation of Ti
    Yang X; Ma L; Shang J
    Sci Rep; 2019 Mar; 9(1):3221. PubMed ID: 30824799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser-Assisted Synthesis of Cu-Al-Ni Shape Memory Alloys: Effect of Inert Gas Pressure and Ni Content.
    Niedbalski S; Durán A; Walczak M; Ramos-Grez JA
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30866523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites.
    González S; Pérez P; Rossinyol E; Suriñach S; Dolors Baró M; Pellicer E; Sort J
    Sci Technol Adv Mater; 2014 Jun; 15(3):035015. PubMed ID: 27877691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.