These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33833899)

  • 1. A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data.
    Zhang M; Li Q; Xie Y
    Quant Biol; 2018 Sep; 6(3):275-286. PubMed ID: 33833899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Chen Y; Huang Y
    Bioinformatics; 2016 Jun; 32(12):i378-i385. PubMed ID: 27307641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HEPeak: an HMM-based exome peak-finding package for RNA epigenome sequencing data.
    Cui X; Meng J; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2015; 16 Suppl 4(Suppl 4):S2. PubMed ID: 25917296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):520. PubMed ID: 27556597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian modeling of spatial molecular profiling data via Gaussian process.
    Li Q; Zhang M; Xie Y; Xiao G
    Bioinformatics; 2021 Nov; 37(22):4129-4136. PubMed ID: 34146105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting m6A methylation regions from Methylated RNA Immunoprecipitation Sequencing.
    Guo Z; Shafik AM; Jin P; Wu Z; Wu H
    Bioinformatics; 2021 Sep; 37(18):2818-2824. PubMed ID: 33724304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package.
    Meng J; Lu Z; Liu H; Zhang L; Zhang S; Chen Y; Rao MK; Huang Y
    Methods; 2014 Oct; 69(3):274-81. PubMed ID: 24979058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential RNA methylation analysis for MeRIP-seq data under general experimental design.
    Guo Z; Shafik AM; Jin P; Wu H
    Bioinformatics; 2022 Oct; 38(20):4705-4712. PubMed ID: 36063045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoAIMS: efficient software for detection of enriched regions of MeRIP-Seq.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2020 Mar; 21(1):103. PubMed ID: 32171255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially Enhanced Differential RNA Methylation Analysis from Affinity-Based Sequencing Data with Hidden Markov Model.
    Zhang YC; Zhang SW; Liu L; Liu H; Zhang L; Cui X; Huang Y; Meng J
    Biomed Res Int; 2015; 2015():852070. PubMed ID: 26301253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments.
    Vestal BE; Moore CM; Wynn E; Saba L; Fingerlin T; Kechris K
    BMC Bioinformatics; 2020 Aug; 21(1):375. PubMed ID: 32859148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data.
    Cui X; Zhang L; Meng J; Rao MK; Chen Y; Huang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):526-534. PubMed ID: 29610101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RADAR: differential analysis of MeRIP-seq data with a random effect model.
    Zhang Z; Zhan Q; Eckert M; Zhu A; Chryplewicz A; De Jesus DF; Ren D; Kulkarni RN; Lengyel E; He C; Chen M
    Genome Biol; 2019 Dec; 20(1):294. PubMed ID: 31870409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validated Impacts of N6-Methyladenosine Methylated mRNAs on Apoptosis and Angiogenesis in Myocardial Infarction Based on MeRIP-Seq Analysis.
    Zhang Y; Hua W; Dang Y; Cheng Y; Wang J; Zhang X; Teng M; Wang S; Zhang M; Kong Z; Lu X; Zheng Y
    Front Mol Biosci; 2021; 8():789923. PubMed ID: 35155564
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential RNA methylation using multivariate statistical methods.
    Ayyala DN; Lin J; Ouyang Z
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34586372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DRME: Count-based differential RNA methylation analysis at small sample size scenario.
    Liu L; Zhang SW; Gao F; Zhang Y; Huang Y; Chen R; Meng J
    Anal Biochem; 2016 Apr; 499():15-23. PubMed ID: 26851340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting Classification Methods for Small Samples of Next-Generation Sequencing Data.
    Zhu J; Yuan Z; Shu L; Liao W; Zhao M; Zhou Y
    Front Genet; 2021; 12():642227. PubMed ID: 33747051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian hidden Markov model for detecting differentially methylated regions.
    Ji T
    Biometrics; 2019 Jun; 75(2):663-673. PubMed ID: 30443900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach.
    Zhang X; Yi N
    Stat Methods Med Res; 2022 Oct; 31(10):1992-2003. PubMed ID: 35695247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.