These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33834201)
1. A community-supported metaproteomic pipeline for improving peptide identifications in hydrothermal vent microbiota. Chang Y; Fan Q; Hou J; Zhang Y; Li J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834201 [TBL] [Abstract][Full Text] [Related]
2. Contigs directed gene annotation (ConDiGA) for accurate protein sequence database construction in metaproteomics. Wu E; Mallawaarachchi V; Zhao J; Yang Y; Liu H; Wang X; Shen C; Lin Y; Qiao L Microbiome; 2024 Mar; 12(1):58. PubMed ID: 38504332 [TBL] [Abstract][Full Text] [Related]
3. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
4. MetaNovo: An open-source pipeline for probabilistic peptide discovery in complex metaproteomic datasets. Potgieter MG; Nel AJM; Fortuin S; Garnett S; Wendoh JM; Tabb DL; Mulder NJ; Blackburn JM PLoS Comput Biol; 2023 Jun; 19(6):e1011163. PubMed ID: 37327214 [TBL] [Abstract][Full Text] [Related]
5. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions. He T; Li H; Zhang X mBio; 2017 Jul; 8(4):. PubMed ID: 28698277 [TBL] [Abstract][Full Text] [Related]
6. Genome-centric insight into metabolically active microbial population in shallow-sea hydrothermal vents. Chen X; Tang K; Zhang M; Liu S; Chen M; Zhan P; Fan W; Chen CA; Zhang Y Microbiome; 2022 Oct; 10(1):170. PubMed ID: 36242065 [TBL] [Abstract][Full Text] [Related]
7. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. Zhou Z; St John E; Anantharaman K; Reysenbach AL Microbiome; 2022 Dec; 10(1):241. PubMed ID: 36572924 [TBL] [Abstract][Full Text] [Related]
8. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. Xie W; Wang F; Guo L; Chen Z; Sievert SM; Meng J; Huang G; Li Y; Yan Q; Wu S; Wang X; Chen S; He G; Xiao X; Xu A ISME J; 2011 Mar; 5(3):414-26. PubMed ID: 20927138 [TBL] [Abstract][Full Text] [Related]
9. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Galambos D; Anderson RE; Reveillaud J; Huber JA Environ Microbiol; 2019 Nov; 21(11):4395-4410. PubMed ID: 31573126 [TBL] [Abstract][Full Text] [Related]
10. Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. Zhang W; Sun J; Cao H; Tian R; Cai L; Ding W; Qian PY Microbiome; 2016 Sep; 4(1):49. PubMed ID: 27600525 [TBL] [Abstract][Full Text] [Related]
11. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Hou J; Sievert SM; Wang Y; Seewald JS; Natarajan VP; Wang F; Xiao X Microbiome; 2020 Jun; 8(1):102. PubMed ID: 32605604 [TBL] [Abstract][Full Text] [Related]
12. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Dombrowski N; Seitz KW; Teske AP; Baker BJ Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260 [TBL] [Abstract][Full Text] [Related]
13. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
14. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Meier DV; Pjevac P; Bach W; Markert S; Schweder T; Jamieson J; Petersen S; Amann R; Meyerdierks A Environ Microbiol; 2019 Feb; 21(2):682-701. PubMed ID: 30585382 [TBL] [Abstract][Full Text] [Related]
15. Metagenomic Insights into the Metabolic and Ecological Functions of Abundant Deep-Sea Hydrothermal Vent DPANN Archaea. Cai R; Zhang J; Liu R; Sun C Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608296 [TBL] [Abstract][Full Text] [Related]
16. Seafloor Incubation Experiment with Deep-Sea Hydrothermal Vent Fluid Reveals Effect of Pressure and Lag Time on Autotrophic Microbial Communities. Fortunato CS; Butterfield DA; Larson B; Lawrence-Slavas N; Algar CK; Zeigler Allen L; Holden JF; Proskurowski G; Reddington E; Stewart LC; Topçuoğlu BD; Vallino JJ; Huber JA Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608294 [TBL] [Abstract][Full Text] [Related]
17. Landscape of the metaplasmidome of deep-sea hydrothermal vents located at Arctic Mid-Ocean Ridges in the Norwegian-Greenland Sea: ecological insights from comparative analysis of plasmid identification tools. Ciuchcinski K; Stokke R; Steen IH; Dziewit L FEMS Microbiol Ecol; 2024 Sep; 100(10):. PubMed ID: 39271469 [TBL] [Abstract][Full Text] [Related]
18. Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily. Speth DR; Yu FB; Connon SA; Lim S; Magyar JS; Peña-Salinas ME; Quake SR; Orphan VJ ISME J; 2022 Jul; 16(7):1750-1764. PubMed ID: 35352015 [TBL] [Abstract][Full Text] [Related]
19. Optimizing metaproteomics database construction: lessons from a study of the vaginal microbiome. Lee EM; Srinivasan S; Purvine SO; Fiedler TL; Leiser OP; Proll SC; Minot SS; Deatherage Kaiser BL; Fredricks DN mSystems; 2023 Aug; 8(4):e0067822. PubMed ID: 37350639 [TBL] [Abstract][Full Text] [Related]
20. Metagenomic Taxonomy-Guided Database-Searching Strategy for Improving Metaproteomic Analysis. Xiao J; Tanca A; Jia B; Yang R; Wang B; Zhang Y; Li J J Proteome Res; 2018 Apr; 17(4):1596-1605. PubMed ID: 29436230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]