BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33834348)

  • 1. Learning ultrasound rendering from cross-sectional model slices for simulated training.
    Zhang L; Portenier T; Goksel O
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):721-730. PubMed ID: 33834348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound simulation with deformable and patient-specific scatterer maps.
    Starkov R; Zhang L; Bajka M; Tanner C; Goksel O
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1589-1599. PubMed ID: 31435812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternately optimized generative adversarial network with texture and content constraints for deformable registration of 3D ultrasound images.
    Zhang J; Fu T; Wang Y; Li J; Xiao D; Fan J; Lin Y; Song H; Ji F; Yang M; Yang J
    Phys Med Biol; 2023 Jul; 68(14):. PubMed ID: 37343570
    [No Abstract]   [Full Text] [Related]  

  • 5. A deep learning method for image-based subject-specific local SAR assessment.
    Meliadò EF; Raaijmakers AJE; Sbrizzi A; Steensma BR; Maspero M; Savenije MHF; Luijten PR; van den Berg CAT
    Magn Reson Med; 2020 Feb; 83(2):695-711. PubMed ID: 31483521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image Quality Improvement of Hand-Held Ultrasound Devices With a Two-Stage Generative Adversarial Network.
    Zhou Z; Wang Y; Guo Y; Qi Y; Yu J
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):298-311. PubMed ID: 31021759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN.
    Alsinan AZ; Patel VM; Hacihaliloglu I
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1477-1485. PubMed ID: 32656685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based reconstruction of ultrasound images from raw channel data.
    Strohm H; Rothlübbers S; Eickel K; Günther M
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1487-1490. PubMed ID: 32495155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network.
    Ran M; Hu J; Chen Y; Chen H; Sun H; Zhou J; Zhang Y
    Med Image Anal; 2019 Jul; 55():165-180. PubMed ID: 31085444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance rapid MR parameter mapping using model-based deep adversarial learning.
    Liu F; Kijowski R; Feng L; El Fakhri G
    Magn Reson Imaging; 2020 Dec; 74():152-160. PubMed ID: 32980503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Dose CT Image Synthesis for Domain Adaptation Imaging Using a Generative Adversarial Network With Noise Encoding Transfer Learning.
    Li M; Wang J; Chen Y; Tang Y; Wu Z; Qi Y; Jiang H; Zheng J; Tsui BMW
    IEEE Trans Med Imaging; 2023 Sep; 42(9):2616-2630. PubMed ID: 37030685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: creation of an oncology database.
    Papadimitroulas P; Loudos G; Le Maitre A; Hatt M; Tixier F; Efthimiou N; Nikiforidis GC; Visvikis D; Kagadis GC
    Med Phys; 2013 Nov; 40(11):112506. PubMed ID: 24320465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-Based Reconstruction of Tissue Scatterers Using Beam Steering for Ultrasound Simulation.
    Mattausch O; Goksel O
    IEEE Trans Med Imaging; 2018 Mar; 37(3):767-780. PubMed ID: 29533894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.