These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33834771)

  • 21. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens.
    Ma Y; Rui G; Gu B; Cui Y
    Sci Rep; 2017 Nov; 7(1):14611. PubMed ID: 29097711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional plasmonic film for recording near-field optical intensity.
    Roxworthy BJ; Bhuiya AM; Inavalli VV; Chen H; Toussaint KC
    Nano Lett; 2014 Aug; 14(8):4687-93. PubMed ID: 25020242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobile nanotweezers for active colloidal manipulation.
    Ghosh S; Ghosh A
    Sci Robot; 2018 Jan; 3(14):. PubMed ID: 33141698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanophotonic trapping for precise manipulation of biomolecular arrays.
    Soltani M; Lin J; Forties RA; Inman JT; Saraf SN; Fulbright RM; Lipson M; Wang MD
    Nat Nanotechnol; 2014 Jun; 9(6):448-52. PubMed ID: 24776649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell biomagnifier for optical nanoscopes and nanotweezers.
    Li Y; Liu X; Li B
    Light Sci Appl; 2019; 8():61. PubMed ID: 31645911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterned Plasmonic Surfaces-Theory, Fabrication, and Applications in Biosensing.
    Chorsi HT; Zhu Y; Zhang JXJ
    J Microelectromech Syst; 2017 Aug; 26(4):718-739. PubMed ID: 29276365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force.
    Sahafi M; Habibzadeh-Sharif A
    Opt Express; 2019 Sep; 27(20):28944-28951. PubMed ID: 31684637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.
    Zheng Y; Ryan J; Hansen P; Cheng YT; Lu TJ; Hesselink L
    Nano Lett; 2014 Jun; 14(6):2971-6. PubMed ID: 24807058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold cauldrons as efficient candidates for plasmonic tweezers.
    Khosravi MA; Aqhili A; Vasini S; Khosravi MH; Darbari S; Hajizadeh F
    Sci Rep; 2020 Nov; 10(1):19356. PubMed ID: 33168879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
    Roxworthy BJ; Ko KD; Kumar A; Fung KH; Chow EK; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2012 Feb; 12(2):796-801. PubMed ID: 22208881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.
    Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P
    Front Chem; 2020; 8():593398. PubMed ID: 33240853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomanipulation using near field photonics.
    Erickson D; Serey X; Chen YF; Mandal S
    Lab Chip; 2011 Mar; 11(6):995-1009. PubMed ID: 21243158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.