These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 33834800)

  • 1. Stochastic Kinetics of Nanocatalytic Systems.
    Kang J; Park SJ; Kim JH; Chen P; Sung J
    Phys Rev Lett; 2021 Mar; 126(12):126001. PubMed ID: 33834800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of chemical reactions on single nanocatalysts with heterogeneous active sites.
    Chaudhury S; Jangid P; Kolomeisky AB
    J Chem Phys; 2023 Feb; 158(7):074101. PubMed ID: 36813720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.
    Park SJ; Song S; Jeong IC; Koh HR; Kim JH; Sung J
    J Phys Chem Lett; 2017 Jul; 8(13):3152-3158. PubMed ID: 28609615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic theoretical approach to study the size-dependent catalytic activity of a metal nanoparticle at the single molecule level.
    Singh D; Chaudhury S
    Phys Chem Chem Phys; 2017 Mar; 19(13):8889-8895. PubMed ID: 28294214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Tools to Quantify Stochastic Fluctuations in Single-Molecule Catalysis by Enzymes and Nanoparticles.
    Singh D; Punia B; Chaudhury S
    ACS Omega; 2022 Dec; 7(51):47587-47600. PubMed ID: 36591158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.
    Lim YR; Park SJ; Park BJ; Cao J; Silbey RJ; Sung J
    J Chem Theory Comput; 2012 Apr; 8(4):1415-25. PubMed ID: 26596754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics.
    Xu W; Kong JS; Yeh YT; Chen P
    Nat Mater; 2008 Dec; 7(12):992-6. PubMed ID: 18997774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative interpretation of the randomness in single enzyme turnover times.
    Yang S; Cao J; Silbey RJ; Sung J
    Biophys J; 2011 Aug; 101(3):519-24. PubMed ID: 21806919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level.
    Xu W; Kong JS; Chen P
    Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Investigations of the Dynamics of Chemical Reactions on Nanocatalysts with Multiple Active Sites.
    Chaudhury S; Singh D; Kolomeisky AB
    J Phys Chem Lett; 2020 Mar; 11(6):2330-2335. PubMed ID: 32125856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy.
    Liang R; Li Y; Huo M; Lin H; Chen Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):42917-42931. PubMed ID: 31635454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity.
    Zhang Y; Lucas JM; Song P; Beberwyck B; Fu Q; Xu W; Alivisatos AP
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):8959-64. PubMed ID: 26150516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science.
    Li Y; Yang C; Guo X
    Acc Chem Res; 2020 Jan; 53(1):159-169. PubMed ID: 31545589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy.
    Chen P; Zhou X; Andoy NM; Han KS; Choudhary E; Zou N; Chen G; Shen H
    Chem Soc Rev; 2014 Feb; 43(4):1107-17. PubMed ID: 24045786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transitional Metal-Based Noncatalytic Medicine for Tumor Therapy.
    Wu W; Pu Y; Lu X; Lin H; Shi J
    Adv Healthc Mater; 2021 Jun; 10(11):e2001819. PubMed ID: 33857353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule fluorescence imaging of nanocatalytic processes.
    Chen P; Zhou X; Shen H; Andoy NM; Choudhary E; Han KS; Liu G; Meng W
    Chem Soc Rev; 2010 Dec; 39(12):4560-70. PubMed ID: 20886166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Reaction Dynamics on Heterogeneous Catalysts Using a Simple Stochastic Approach.
    Punia B; Chaudhury S; Kolomeisky AB
    J Phys Chem Lett; 2021 Dec; 12(49):11802-11810. PubMed ID: 34860518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of Kramers turnover with a levitated nanoparticle.
    Rondin L; Gieseler J; Ricci F; Quidant R; Dellago C; Novotny L
    Nat Nanotechnol; 2017 Dec; 12(12):1130-1133. PubMed ID: 29209016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review.
    Din MI; Khalid R; Hussain Z; Hussain T; Mujahid A; Najeeb J; Izhar F
    Crit Rev Anal Chem; 2020; 50(4):322-338. PubMed ID: 31303031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution.
    Zhang Z; Dong J; Yang Y; Zhou Y; Chen Y; Xu Y; Feng J
    Nat Commun; 2023 Dec; 14(1):7993. PubMed ID: 38042861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.