These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Zeno and anti-zeno polarization control of spin ensembles by induced dephasing. Alvarez GA; Rao DD; Frydman L; Kurizki G Phys Rev Lett; 2010 Oct; 105(16):160401. PubMed ID: 21230950 [TBL] [Abstract][Full Text] [Related]
4. Full Spectrum of the Liouvillian of Open Dissipative Quantum Systems in the Zeno Limit. Popkov V; Presilla C Phys Rev Lett; 2021 May; 126(19):190402. PubMed ID: 34047584 [TBL] [Abstract][Full Text] [Related]
5. The quantum Zeno and anti-Zeno effects with strong system-environment coupling. Chaudhry AZ Sci Rep; 2017 May; 7(1):1741. PubMed ID: 28496109 [TBL] [Abstract][Full Text] [Related]
6. A general framework for the Quantum Zeno and anti-Zeno effects. Chaudhry AZ Sci Rep; 2016 Jul; 6():29497. PubMed ID: 27405268 [TBL] [Abstract][Full Text] [Related]
7. Dynamic nuclear polarization via the cross effect and thermal mixing: B. Energy transport. Wenckebach WT J Magn Reson; 2019 Feb; 299():151-167. PubMed ID: 30597441 [TBL] [Abstract][Full Text] [Related]
9. Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization. De Luca A; Rosso A Phys Rev Lett; 2015 Aug; 115(8):080401. PubMed ID: 26340169 [TBL] [Abstract][Full Text] [Related]
10. Quantum mechanical response to a driven Caldeira-Leggett bath. Grabert H; Thorwart M Phys Rev E; 2018 Jul; 98(1-1):012122. PubMed ID: 30110760 [TBL] [Abstract][Full Text] [Related]
11. The quantum Zeno and anti-Zeno effects with driving fields in the weak and strong coupling regimes. Majeed M; Chaudhry AZ Sci Rep; 2021 Jan; 11(1):1836. PubMed ID: 33469109 [TBL] [Abstract][Full Text] [Related]
12. Quantum decoherence reduction by increasing the thermal bath temperature. Montina A; Arecchi FT Phys Rev Lett; 2008 Mar; 100(12):120401. PubMed ID: 18517840 [TBL] [Abstract][Full Text] [Related]
13. Electrically driven reverse overhauser pumping of nuclear spins in quantum dots. Rudner MS; Levitov LS Phys Rev Lett; 2007 Dec; 99(24):246602. PubMed ID: 18233468 [TBL] [Abstract][Full Text] [Related]
14. Coherent dynamics of a single spin interacting with an adjustable spin bath. Hanson R; Dobrovitski VV; Feiguin AE; Gywat O; Awschalom DD Science; 2008 Apr; 320(5874):352-5. PubMed ID: 18339902 [TBL] [Abstract][Full Text] [Related]
15. Restoring coherence lost to a slow interacting mesoscopic spin bath. Yao W; Liu RB; Sham LJ Phys Rev Lett; 2007 Feb; 98(7):077602. PubMed ID: 17359060 [TBL] [Abstract][Full Text] [Related]
16. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface. Yang K; Bae Y; Paul W; Natterer FD; Willke P; Lado JL; Ferrón A; Choi T; Fernández-Rossier J; Heinrich AJ; Lutz CP Phys Rev Lett; 2017 Dec; 119(22):227206. PubMed ID: 29286811 [TBL] [Abstract][Full Text] [Related]
17. Protection of centre spin coherence by dynamic nuclear spin polarization in diamond. Liu GQ; Jiang QQ; Chang YC; Liu DQ; Li WX; Gu CZ; Po HC; Zhang WX; Zhao N; Pan XY Nanoscale; 2014 Sep; 6(17):10134-9. PubMed ID: 25042514 [TBL] [Abstract][Full Text] [Related]
18. Generation of macroscopic superpositions of quantum states by linear coupling to a bath. Bhaktavatsala Rao DD; Bar-Gill N; Kurizki G Phys Rev Lett; 2011 Jan; 106(1):010404. PubMed ID: 21231724 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System. Spagnolo B; Carollo A; Valenti D Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265317 [TBL] [Abstract][Full Text] [Related]
20. Control of local relaxation behavior in closed bipartite quantum systems. Schmidt H; Mahler G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016117. PubMed ID: 16090046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]