These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33834944)

  • 21. Coarse-Grained Potential Model for Structural Prediction of Confined Water.
    Mashayak SY; Aluru NR
    J Chem Theory Comput; 2012 May; 8(5):1828-40. PubMed ID: 26593674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody.
    Brandt JP; Patapoff TW; Aragon SR
    Biophys J; 2010 Aug; 99(3):905-13. PubMed ID: 20682269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity.
    Cloutier TK; Sudrik C; Mody N; Hasige SA; Trout BL
    MAbs; 2020; 12(1):1816312. PubMed ID: 32938318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach - limitations and applicability for high-concentration liquid protein solutions.
    Wagner M; Reiche K; Blume A; Garidel P
    Pharm Dev Technol; 2013; 18(4):963-70. PubMed ID: 22256900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A generic force field for protein coarse-grained molecular dynamics simulation.
    Gu J; Bai F; Li H; Wang X
    Int J Mol Sci; 2012 Nov; 13(11):14451-69. PubMed ID: 23203075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein-Protein Interactions, Clustering, and Rheology for Bovine IgG up to High Concentrations Characterized by Small Angle X-Ray Scattering and Molecular Dynamics Simulations.
    Chowdhury A; Guruprasad G; Chen AT; Karouta CA; Blanco MA; Truskett TM; Johnston KP
    J Pharm Sci; 2020 Jan; 109(1):696-708. PubMed ID: 31726055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation.
    Das A; Andersen HC
    J Chem Phys; 2009 Jul; 131(3):034102. PubMed ID: 19624176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New Model to Predict the Concentration-Dependent Viscosity of Monoclonal Antibody Solutions.
    Dandekar R; Ardekani AM
    Mol Pharm; 2021 Dec; 18(12):4385-4392. PubMed ID: 34699237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concentration dependent viscosity of monoclonal antibody solutions: explaining experimental behavior in terms of molecular properties.
    Li L; Kumar S; Buck PM; Burns C; Lavoie J; Singh SK; Warne NW; Nichols P; Luksha N; Boardman D
    Pharm Res; 2014 Nov; 31(11):3161-78. PubMed ID: 24906598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
    Binabaji E; Ma J; Zydney AL
    Pharm Res; 2015 Sep; 32(9):3102-9. PubMed ID: 25832501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monoclonal Antibody Aggregation near Silicone Oil-Water Interfaces.
    Dandekar R; Ardekani AM
    Langmuir; 2021 Feb; 37(4):1386-1398. PubMed ID: 33478225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport and dielectric properties of water and the influence of coarse-graining: comparing BMW, SPC/E, and TIP3P models.
    Braun D; Boresch S; Steinhauser O
    J Chem Phys; 2014 Feb; 140(6):064107. PubMed ID: 24527900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1.
    Hu Y; Arora J; Joshi SB; Esfandiary R; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2020 Jan; 109(1):340-352. PubMed ID: 31201906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entanglement model of antibody viscosity.
    Schmit JD; He F; Mishra S; Ketchem RR; Woods CE; Kerwin BA
    J Phys Chem B; 2014 May; 118(19):5044-9. PubMed ID: 24758234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rotational dynamics of proteins in nanochannels: role of solvent's local viscosity.
    Haridasan N; Sathian SP
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward a Suite of Coarse-Grained Models for Molecular Simulation of Monoclonal Antibodies and Therapeutic Proteins.
    Shahfar H; Forder JK; Roberts CJ
    J Phys Chem B; 2021 Apr; 125(14):3574-3588. PubMed ID: 33821645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies?
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.
    Ruiz-Morales Y; Romero-Martínez A
    J Phys Chem B; 2018 Apr; 122(14):3931-3943. PubMed ID: 29533651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early developability screen of therapeutic antibody candidates using Taylor dispersion analysis and UV area imaging detection.
    Lavoisier A; Schlaeppi JM
    MAbs; 2015; 7(1):77-83. PubMed ID: 25514497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.