BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33835777)

  • 1. Optogenetic Amplification Circuits for Light-Induced Metabolic Control.
    Zhao EM; Lalwani MA; Chen JM; Orillac P; Toettcher JE; Avalos JL
    ACS Synth Biol; 2021 May; 10(5):1143-1154. PubMed ID: 33835777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic regulation of engineered cellular metabolism for microbial chemical production.
    Zhao EM; Zhang Y; Mehl J; Park H; Lalwani MA; Toettcher JE; Avalos JL
    Nature; 2018 Mar; 555(7698):683-687. PubMed ID: 29562237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.
    Zhao EM; Lalwani MA; Lovelett RJ; García-Echauri SA; Hoffman SM; Gonzalez CL; Toettcher JE; Kevrekidis IG; Avalos JL
    ACS Synth Biol; 2020 Dec; 9(12):3254-3266. PubMed ID: 33232598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of the lac operon for bacterial chemical and protein production.
    Lalwani MA; Ip SS; Carrasco-López C; Day C; Zhao EM; Kawabe H; Avalos JL
    Nat Chem Biol; 2021 Jan; 17(1):71-79. PubMed ID: 32895498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.
    Lovelett RJ; Zhao EM; Lalwani MA; Toettcher JE; Kevrekidis IG; L Avalos J
    ACS Synth Biol; 2021 Feb; 10(2):219-227. PubMed ID: 33492138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Lalwani MA; Zhao EM; Wegner SA; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2060-2075. PubMed ID: 34346207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Control of Microbial Consortia Populations for Chemical Production.
    Lalwani MA; Kawabe H; Mays RL; Hoffman SM; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2015-2029. PubMed ID: 34351122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-based control of metabolic flux through assembly of synthetic organelles.
    Zhao EM; Suek N; Wilson MZ; Dine E; Pannucci NL; Gitai Z; Avalos JL; Toettcher JE
    Nat Chem Biol; 2019 Jun; 15(6):589-597. PubMed ID: 31086330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.
    Gramazio S; Trauth J; Bezold F; Essen LO; Taxis C; Spadaccini R
    Biotechnol J; 2022 Aug; 17(8):e2100676. PubMed ID: 35481893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae.
    Lane S; Zhang Y; Yun EJ; Ziolkowski L; Zhang G; Jin YS; Avalos JL
    Biotechnol Bioeng; 2020 Feb; 117(2):372-381. PubMed ID: 31631318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae.
    Su Y; Shao W; Zhang A; Zhang W
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33620449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2
    Zhang Q; Yu S; Lyu Y; Zeng W; Zhou J
    ACS Synth Biol; 2021 May; 10(5):1166-1175. PubMed ID: 33877810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bright frontiers of microbial metabolic optogenetics.
    Wegner SA; Barocio-Galindo RM; Avalos JL
    Curr Opin Chem Biol; 2022 Dec; 71():102207. PubMed ID: 36103753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Controlled Fermentations for Microbial Chemical and Protein Production.
    Hoffman SM; Lalwani MA; Avalos JL
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.