These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33835777)

  • 21. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in
    Hammer SK; Zhang Y; Avalos JL
    ACS Synth Biol; 2020 Mar; 9(3):546-555. PubMed ID: 32049515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial engineering for the production of isobutanol: current status and future directions.
    Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A
    Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae.
    Yamanishi M; Matsuyama T
    ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Venturelli OS; Zavala VM; McClean MN
    ACS Synth Biol; 2024 May; 13(5):1424-1433. PubMed ID: 38684225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.
    Lyu X; Ng KR; Lee JL; Mark R; Chen WN
    J Agric Food Chem; 2017 Aug; 65(31):6638-6646. PubMed ID: 28707470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M
    Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.
    Duplus-Bottin H; Spichty M; Triqueneaux G; Place C; Mangeot PE; Ohlmann T; Vittoz F; Yvert G
    Elife; 2021 Feb; 10():. PubMed ID: 33620312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures.
    Minami SA; Garimella SS; Shah PS
    Biotechnol J; 2024 Jan; 19(1):e2300071. PubMed ID: 37877211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.
    Kuroda K; Hammer SK; Watanabe Y; Montaño López J; Fink GR; Stephanopoulos G; Ueda M; Avalos JL
    Cell Syst; 2019 Dec; 9(6):534-547.e5. PubMed ID: 31734159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae.
    Wang Z; Jiang M; Guo X; Liu Z; He X
    Microb Cell Fact; 2018 Apr; 17(1):60. PubMed ID: 29642888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.