These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33835777)

  • 41. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution-guided optimization of biosynthetic pathways.
    Raman S; Rogers JK; Taylor ND; Church GM
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17803-8. PubMed ID: 25453111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae.
    Zhang X; Liu Y; Wang J; Zhao Y; Deng Y
    J Microbiol; 2020 Dec; 58(12):1065-1075. PubMed ID: 33095385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
    Melendez J; Patel M; Oakes BL; Xu P; Morton P; McClean MN
    Integr Biol (Camb); 2014 Mar; 6(3):366-72. PubMed ID: 24477515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.
    Yuan J; Chen X; Mishra P; Ching CB
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):465-474. PubMed ID: 27847988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae.
    Kim D; Song JY; Hahn JS
    Appl Environ Microbiol; 2015 Dec; 81(24):8392-401. PubMed ID: 26431967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value.
    Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J
    Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A; Sae-Tang K; Sansatchanon K; Sudying P; Boonchoo K; Tanapongpipat S; Kocharin K; Runguphan W
    FEMS Yeast Res; 2021 Apr; 21(4):. PubMed ID: 33856451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast.
    Bezold F; Scheffer J; Wendering P; Razaghi-Moghadam Z; Trauth J; Pook B; Nußhär H; Hasenjäger S; Nikoloski Z; Essen LO; Taxis C
    Metab Eng; 2023 Sep; 79():97-107. PubMed ID: 37422133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Gac/Rsm Signaling Cascade for Optogenetic Induction of the Pathogenicity Switch in
    Cheng X; Pu L; Fu S; Xia A; Huang S; Ni L; Xing X; Yang S; Jin F
    ACS Synth Biol; 2021 Jun; 10(6):1520-1530. PubMed ID: 34076414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae.
    Moreno Morales N; Patel MT; Stewart CJ; Sweeney K; McClean MN
    mSphere; 2021 Aug; 6(4):e0058121. PubMed ID: 34431694
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae.
    Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS
    Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.
    Wang M; Li S; Zhao H
    Biotechnol Bioeng; 2016 Jan; 113(1):206-15. PubMed ID: 26059511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.
    Wu P; Chen Y; Liu M; Xiao G; Yuan J
    ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.