These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 33835788)
1. Exploring New Horizons in Liquid Compartmentalization via Microfluidics. Keller S; Teora SP; Boujemaa M; Wilson DA Biomacromolecules; 2021 May; 22(5):1759-1769. PubMed ID: 33835788 [TBL] [Abstract][Full Text] [Related]
2. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Daradmare S; Lee CS Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253 [TBL] [Abstract][Full Text] [Related]
3. Liquid-liquid biopolymers aqueous solution segregative phase separation in food: From fundamentals to applications-A review. Hu B; Zhang C; Zhu J; Yang J; Zheng Q; Zhang X; Cao J; Han L Int J Biol Macromol; 2024 Apr; 265(Pt 2):131044. PubMed ID: 38518933 [TBL] [Abstract][Full Text] [Related]
4. Phase separation in plants: New insights into cellular compartmentalization. Xu X; Zheng C; Lu D; Song CP; Zhang L J Integr Plant Biol; 2021 Nov; 63(11):1835-1855. PubMed ID: 34314106 [TBL] [Abstract][Full Text] [Related]
5. Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles. Li Q; Song Q; Guo W; Cao Y; Cui X; Chen D; Shum HC Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202313096. PubMed ID: 37728515 [TBL] [Abstract][Full Text] [Related]
6. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition. Kojima T; Takayama S ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001 [TBL] [Abstract][Full Text] [Related]
7. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. Ma Q; Song Y; Sun W; Cao J; Yuan H; Wang X; Sun Y; Shum HC Adv Sci (Weinh); 2020 Apr; 7(7):1903359. PubMed ID: 32274317 [TBL] [Abstract][Full Text] [Related]
8. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Guo W; Kinghorn AB; Zhang Y; Li Q; Poonam AD; Tanner JA; Shum HC Nat Commun; 2021 May; 12(1):3194. PubMed ID: 34045455 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic Control of Coexisting Chemical Microenvironments within Multiphase Water-in-Fluorocarbon Droplets. Crowe CD; Keating CD Langmuir; 2022 Feb; 38(5):1811-1820. PubMed ID: 35090115 [TBL] [Abstract][Full Text] [Related]
11. Controlled Formation of All-Aqueous Janus Droplets by Liquid-Liquid Phase Separation of an Aqueous Three-Phase System. Song Q; Chao Y; Zhang Y; Shum HC J Phys Chem B; 2021 Jan; 125(2):562-570. PubMed ID: 33416329 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Linsenmeier M; Kopp MRG; Grigolato F; Emmanoulidis L; Liu D; Zürcher D; Hondele M; Weis K; Capasso Palmiero U; Arosio P Angew Chem Int Ed Engl; 2019 Oct; 58(41):14489-14494. PubMed ID: 31334587 [TBL] [Abstract][Full Text] [Related]
14. Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Nordenskiöld L; Shi X; Korolev N; Zhao L; Zhai Z; Lindman B Adv Colloid Interface Sci; 2024 Apr; 326():103133. PubMed ID: 38547652 [TBL] [Abstract][Full Text] [Related]
15. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. Ahmed T; Yamanishi C; Kojima T; Takayama S Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):231-255. PubMed ID: 33950741 [TBL] [Abstract][Full Text] [Related]
16. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Keating CD Acc Chem Res; 2012 Dec; 45(12):2114-24. PubMed ID: 22330132 [TBL] [Abstract][Full Text] [Related]
17. Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. Zhu S; Forth J; Xie G; Chao Y; Tian J; Russell TP; Shum HC ACS Nano; 2020 Sep; 14(9):11215-11224. PubMed ID: 32515582 [TBL] [Abstract][Full Text] [Related]
18. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925 [TBL] [Abstract][Full Text] [Related]
19. Associative and segregative phase separations of gelatin/kappa-carrageenan aqueous mixtures. Fang Y; Li L; Inoue C; Lundin L; Appelqvist I Langmuir; 2006 Nov; 22(23):9532-7. PubMed ID: 17073476 [TBL] [Abstract][Full Text] [Related]
20. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]