BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33835795)

  • 1. Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2337-2345. PubMed ID: 33835795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Nano; 2022 Jul; 16(7):10209-10218. PubMed ID: 35587205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution.
    Zhang F; You X; Dou H; Liu Z; Zuo B; Zhang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3352-61. PubMed ID: 25603225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile preparation of a strong chitosan-silk biocomposite film.
    Huang J; Qin J; Zhang P; Chen X; You X; Zhang F; Zuo B; Yao M
    Carbohydr Polym; 2020 Feb; 229():115515. PubMed ID: 31826522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanofiber Reinforced Nonmulberry Silk Protein Fibroin Nanobiocomposite for Tissue Engineering Applications.
    Naskar D; Bhattacharjee P; Ghosh AK; Mandal M; Kundu SC
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19356-19370. PubMed ID: 27523165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of self-assembly regenerated silk fibroin nanofibers on the properties of electrospun materials.
    Zhao H; Ren X; Zhang Y; Huang L
    Biomed Mater Eng; 2015; 26 Suppl 1():S89-94. PubMed ID: 26406088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible hydrogel-solution system of silk with high beta-sheet content.
    Bai S; Zhang X; Lu Q; Sheng W; Liu L; Dong B; Kaplan DL; Zhu H
    Biomacromolecules; 2014 Aug; 15(8):3044-51. PubMed ID: 25056606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process.
    Bai S; Liu S; Zhang C; Xu W; Lu Q; Han H; Kaplan DL; Zhu H
    Acta Biomater; 2013 Aug; 9(8):7806-13. PubMed ID: 23628774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
    Zeng L; Jiang L; Teng W; Cappello J; Zohar Y; Wu X
    Macromol Rapid Commun; 2014 Jul; 35(14):1273-9. PubMed ID: 24798978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.
    Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Hanaee-Ahvaz H
    Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):16-25. PubMed ID: 27609469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of interfacial interactions toward strong and tough cellulose nanofiber-based transparent thin films with antifogging feature.
    Roy S; Ghosh BD; Goh KL; Muthoka RM; Kim J
    Carbohydr Polym; 2022 Feb; 278():118974. PubMed ID: 34973788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerated spider silk as a new biomaterial for MEMS.
    Bai J; Ma T; Chu W; Wang R; Silva L; Michal C; Chiao JC; Chiao M
    Biomed Microdevices; 2006 Dec; 8(4):317-23. PubMed ID: 16927024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel layer-by-layer procedure for making nylon-6 nanofiber reinforced high strength, tough, and transparent thermoplastic polyurethane composites.
    Jiang S; Duan G; Hou H; Greiner A; Agarwal S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4366-72. PubMed ID: 22817392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films.
    Perera D; Wang Q; Schniepp HC
    Small; 2022 Jul; 18(30):e2202065. PubMed ID: 35780468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass Production of Biocompatible Graphene Using Silk Nanofibers.
    Zhang X; Wang L; Lu Q; Kaplan DL
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22924-22931. PubMed ID: 29913067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tough Porous Silk Nanofiber-Derived Cryogels with Osteogenic and Angiogenic Capacity for Bone Repair.
    Hou J; Ding Z; Zheng X; Shen Y; Lu Q; Kaplan DL
    Adv Healthc Mater; 2023 Jul; 12(17):e2203050. PubMed ID: 36841910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites.
    Li L; Yang H; Li X; Yan S; Xu A; You R; Zhang Q
    Carbohydr Polym; 2021 Feb; 253():117214. PubMed ID: 33278979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.