These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Role of Rhodobacter sphaeroides photosynthetic reaction center residue M214 in the composition, absorbance properties, and conformations of H(A) and B(A) cofactors. Saer RG; Hardjasa A; Rosell FI; Mauk AG; Murphy ME; Beatty JT Biochemistry; 2013 Apr; 52(13):2206-17. PubMed ID: 23480277 [TBL] [Abstract][Full Text] [Related]
5. Switching sides-Reengineered primary charge separation in the bacterial photosynthetic reaction center. Laible PD; Hanson DK; Buhrmaster JC; Tira GA; Faries KM; Holten D; Kirmaier C Proc Natl Acad Sci U S A; 2020 Jan; 117(2):865-871. PubMed ID: 31892543 [TBL] [Abstract][Full Text] [Related]
6. Replacement or exclusion of the B-branch bacteriopheophytin in the purple bacterial reaction centre: the H(B) cofactor is not required for assembly or core function of the Rhodobacter sphaeroides complex. Watson AJ; Fyfe PK; Frolov D; Wakeham MC; Nabedryk E; van Grondelle R; Breton J; Jones MR Biochim Biophys Acta; 2005 Nov; 1710(1):34-46. PubMed ID: 16181607 [TBL] [Abstract][Full Text] [Related]
7. Protein influence on charge-asymmetry of the primary donor in photosynthetic bacterial reaction centers containing a heterodimer: effects on photophysical properties and electron transfer. Harris MA; Luehr CA; Faries KM; Wander M; Kressel L; Holten D; Hanson DK; Laible PD; Kirmaier C J Phys Chem B; 2013 Apr; 117(15):4028-41. PubMed ID: 23560569 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Allen JP; Artz K; Lin X; Williams JC; Ivancich A; Albouy D; Mattioli TA; Fetsch A; Kuhn M; Lubitz W Biochemistry; 1996 May; 35(21):6612-9. PubMed ID: 8639609 [TBL] [Abstract][Full Text] [Related]
9. Two pathways to understanding electron transfer in reaction centers from photosynthetic bacteria: A comparison of Rhodobacter sphaeroides and Rhodobacter capsulatus mutants. Faries KM; Hanson DK; Buhrmaster JC; Hippleheuser S; Tira GA; Wyllie RM; Kohout CE; Magdaong NCM; Holten D; Laible PD; Kirmaier C Biochim Biophys Acta Bioenerg; 2024 Aug; 1865(3):149047. PubMed ID: 38692451 [TBL] [Abstract][Full Text] [Related]
10. Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Kirmaier C; Gaul D; DeBey R; Holten D; Schenck CC Science; 1991 Feb; 251(4996):922-7. PubMed ID: 2000491 [TBL] [Abstract][Full Text] [Related]
11. Relationship between altered structure and photochemistry in mutant reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. Czarnecki K; Cua A; Kirmaier C; Holten D; Bocian DF Biospectroscopy; 1999; 5(6):346-57. PubMed ID: 10604287 [TBL] [Abstract][Full Text] [Related]
13. Characterization of bacterial reaction centers having mutations of aromatic residues in the binding site of the bacteriopheophytin intermediary electron carrier. Heller BA; Holten D; Kirmaier C Biochemistry; 1995 Apr; 34(15):5294-302. PubMed ID: 7711051 [TBL] [Abstract][Full Text] [Related]
14. The effect of exchange of bacteriopheophytin a with plant pheophytin a on charge separation in Y(M210)W mutant reaction centers of Rhodobacter sphaeroides at low temperature. Shkuropatov AY; Neerken S; Permentier HP; de Wijn R; Schmidt KA; Shuvalov VA; Aartsma TJ; Gast P; Hoff AJ Biochim Biophys Acta; 2003 Mar; 1557(1-3):1-12. PubMed ID: 12615343 [TBL] [Abstract][Full Text] [Related]
15. Mutation-Induced Changes in the Protein Environment and Site Energies in the (M)L214G Mutant of the Rhodobacter sphaeroides Bacterial Reaction Center. Jankowiak R; Rancova O; Chen J; Kell A; Saer RG; Beatty JT; Abramavicius D J Phys Chem B; 2016 Aug; 120(32):7859-71. PubMed ID: 27458891 [TBL] [Abstract][Full Text] [Related]
16. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy. Nabedryk E; Breton J Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937 [TBL] [Abstract][Full Text] [Related]
17. Structural and spectroscopic consequences of hexacoordination of a bacteriochlorophyll cofactor in the Rhodobacter sphaeroides reaction center . Frolov D; Marsh M; Crouch LI; Fyfe PK; Robert B; van Grondelle R; Hadfield A; Jones MR Biochemistry; 2010 Mar; 49(9):1882-92. PubMed ID: 20112981 [TBL] [Abstract][Full Text] [Related]
18. In situ formation of photoactive B-ring reduced chlorophyll isomer in photosynthetic protein LH2. Saga Y; Otsuka Y; Funakoshi D; Masaoka Y; Kihara Y; Hidaka T; Hatano H; Asakawa H; Nagasawa Y; Tamiaki H Sci Rep; 2020 Nov; 10(1):19383. PubMed ID: 33168889 [TBL] [Abstract][Full Text] [Related]
19. Resonance Raman characterization of reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. Czarnecki K; Schenck CC; Bocian DF Biochemistry; 1997 Dec; 36(48):14697-704. PubMed ID: 9398189 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C==O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides. Breton J; Nabedryk E; Allen JP; Williams JC Biochemistry; 1997 Apr; 36(15):4515-25. PubMed ID: 9109660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]