These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33835833)

  • 21. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics.
    Fifer LM; Wong ML
    Astrobiology; 2024 Jun; 24(6):590-603. PubMed ID: 38805190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing Flight-like Pyrolysis Gas Chromatography-Mass Spectrometry as Performed by the Mars Organic Molecule Analyzer Onboard the ExoMars 2020 Rover on Oxia Planum Analog Samples.
    Reinhardt M; Goetz W; Thiel V
    Astrobiology; 2020 Mar; 20(3):415-428. PubMed ID: 31985278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.
    McLennan SM; Anderson RB; Bell JF; Bridges JC; Calef F; Campbell JL; Clark BC; Clegg S; Conrad P; Cousin A; Des Marais DJ; Dromart G; Dyar MD; Edgar LA; Ehlmann BL; Fabre C; Forni O; Gasnault O; Gellert R; Gordon S; Grant JA; Grotzinger JP; Gupta S; Herkenhoff KE; Hurowitz JA; King PL; Le Mouélic S; Leshin LA; Léveillé R; Lewis KW; Mangold N; Maurice S; Ming DW; Morris RV; Nachon M; Newsom HE; Ollila AM; Perrett GM; Rice MS; Schmidt ME; Schwenzer SP; Stack K; Stolper EM; Sumner DY; Treiman AH; VanBommel S; Vaniman DT; Vasavada A; Wiens RC; Yingst RA;
    Science; 2014 Jan; 343(6169):1244734. PubMed ID: 24324274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration.
    Wade ML; Agresti DG; Wdowiak TJ; Armendarez LP; Farmer JD
    J Geophys Res; 1999 Apr; 104(E4):8489-507. PubMed ID: 11542933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.
    Grotzinger JP; Sumner DY; Kah LC; Stack K; Gupta S; Edgar L; Rubin D; Lewis K; Schieber J; Mangold N; Milliken R; Conrad PG; DesMarais D; Farmer J; Siebach K; Calef F; Hurowitz J; McLennan SM; Ming D; Vaniman D; Crisp J; Vasavada A; Edgett KS; Malin M; Blake D; Gellert R; Mahaffy P; Wiens RC; Maurice S; Grant JA; Wilson S; Anderson RC; Beegle L; Arvidson R; Hallet B; Sletten RS; Rice M; Bell J; Griffes J; Ehlmann B; Anderson RB; Bristow TF; Dietrich WE; Dromart G; Eigenbrode J; Fraeman A; Hardgrove C; Herkenhoff K; Jandura L; Kocurek G; Lee S; Leshin LA; Leveille R; Limonadi D; Maki J; McCloskey S; Meyer M; Minitti M; Newsom H; Oehler D; Okon A; Palucis M; Parker T; Rowland S; Schmidt M; Squyres S; Steele A; Stolper E; Summons R; Treiman A; Williams R; Yingst A;
    Science; 2014 Jan; 343(6169):1242777. PubMed ID: 24324272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of modern and old Río Tinto sedimentary deposits through the biomolecular record using a life marker biochip: implications for detecting life on Mars.
    Parro V; Fernández-Remolar D; Rodríguez-Manfredi JA; Cruz-Gil P; Rivas LA; Ruiz-Bermejo M; Moreno-Paz M; García-Villadangos M; Gómez-Ortiz D; Blanco-López Y; Menor-Salván C; Prieto-Ballesteros O; Gómez-Elvira J
    Astrobiology; 2011; 11(1):29-44. PubMed ID: 21294642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid Biomarkers in Ephemeral Acid Salt Lake Mudflat/Sandflat Sediments: Implications for Mars.
    Johnson SS; Millan M; Graham H; Benison KC; Williams AJ; McAdam A; Knudson CA; Andrejkovičová S; Achilles C
    Astrobiology; 2020 Feb; 20(2):167-178. PubMed ID: 32022603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials.
    Huang 黄俊 J; Salvatore MR; Edwards CS; Harris RL; Christensen PR
    Astrobiology; 2018 Aug; 18(8):1081-1091. PubMed ID: 30074400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.
    Court RW; Sims MR; Cullen DC; Sephton MA
    Astrobiology; 2014 Sep; 14(9):733-52. PubMed ID: 25192400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organic Material Distribution in Mars-Analog Volcanic Rocks, as Determined with Ultraviolet Laser-Induced Fluorescence Spectroscopy.
    Ryan CH; Daly MG; Brady AL; Slater GF; Lim DSS
    Astrobiology; 2021 Aug; 21(8):981-996. PubMed ID: 34406806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable and Large Losses of Diagnostic Biomarkers After Simulated Cosmic Radiation Exposure in Clay- and Carbonate-Rich Mars Analog Samples.
    Roussel A; McAdam AC; Pavlov AA; Knudson CA; Achilles CN; Foustoukos DI; Dworkin JP; Andrejkovičová S; Bower DM; Johnson SS
    Astrobiology; 2024 Jul; 24(7):669-683. PubMed ID: 38979620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing siliceous sinter matrices for long-term preservation of lipid biomarkers in opaline sinter deposits analogous to Mars in El Tatio (Chile).
    Sánchez-García L; Lezcano MÁ; Carrizo D; Severino R; García-Villadangos M; Cady SL; Warren-Rhodes K; Cabrol NA; Parro V
    Sci Total Environ; 2023 Apr; 870():161765. PubMed ID: 36702265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars.
    Vaniman DT; Bish DL; Ming DW; Bristow TF; Morris RV; Blake DF; Chipera SJ; Morrison SM; Treiman AH; Rampe EB; Rice M; Achilles CN; Grotzinger JP; McLennan SM; Williams J; Bell JF; Newsom HE; Downs RT; Maurice S; Sarrazin P; Yen AS; Morookian JM; Farmer JD; Stack K; Milliken RE; Ehlmann BL; Sumner DY; Berger G; Crisp JA; Hurowitz JA; Anderson R; Des Marais DJ; Stolper EM; Edgett KS; Gupta S; Spanovich N;
    Science; 2014 Jan; 343(6169):1243480. PubMed ID: 24324271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars.
    Tan JSW; Salter TL; Watson JS; Waite JH; Sephton MA
    Astrobiology; 2023 Oct; 23(10):1045-1055. PubMed ID: 37506324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Method for Choosing the Best Samples for Mars Sample Return.
    Gordon PR; Sephton MA
    Astrobiology; 2018 May; 18(5):556-570. PubMed ID: 29443541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection.
    Picard A; Gartman A; Girguis PR
    Astrobiology; 2021 May; 21(5):587-604. PubMed ID: 33780638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic Matter Detection on Mars by Pyrolysis-FTIR: An Analysis of Sensitivity and Mineral Matrix Effects.
    Gordon PR; Sephton MA
    Astrobiology; 2016 Nov; 16(11):831-845. PubMed ID: 27870586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosignature Preservation Potential in Playa Evaporites: Impacts of Diagenesis and Implications for Mars Exploration.
    Shkolyar S; Farmer JD
    Astrobiology; 2018 Nov; 18(11):1460-1478. PubMed ID: 30124326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfate minerals: a problem for the detection of organic compounds on Mars?
    Lewis JM; Watson JS; Najorka J; Luong D; Sephton MA
    Astrobiology; 2015 Mar; 15(3):247-58. PubMed ID: 25695727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Key scientific questions and key investigations from the first international conference on Martian phyllosilicates.
    Poulet F; Beaty DW; Bibring JP; Bish D; Bishop JL; Noe Dobrea E; Mustard JF; Petit S; Roach LH
    Astrobiology; 2009 Apr; 9(3):257-67. PubMed ID: 19400732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.