These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33835833)

  • 41. Lipid Biomarker Record of the Serpentinite-Hosted Ecosystem of the Samail Ophiolite, Oman and Implications for the Search for Biosignatures on Mars.
    Newman SA; Lincoln SA; O'Reilly S; Liu X; Shock EL; Kelemen PB; Summons RE
    Astrobiology; 2020 Jul; 20(7):830-845. PubMed ID: 32648829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosignatures Preserved in Carbonate Nodules from the Western Qaidam Basin, NW China: Implications for Life Detection on Mars.
    Chen Y; Sun Y; Liu L; Shen J; Qu Y; Pan Y; Lin W
    Astrobiology; 2023 Feb; 23(2):172-182. PubMed ID: 36577041
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preservation of martian organic and environmental records: final report of the Mars biosignature working group.
    Summons RE; Amend JP; Bish D; Buick R; Cody GD; Des Marais DJ; Dromart G; Eigenbrode JL; Knoll AH; Sumner DY
    Astrobiology; 2011 Mar; 11(2):157-81. PubMed ID: 21417945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit.
    Stalport F; Rouquette L; Poch O; Dequaire T; Chaouche-Mechidal N; Payart S; Szopa C; Coll P; Chaput D; Jaber M; Raulin F; Cottin H
    Astrobiology; 2019 Aug; 19(8):1037-1052. PubMed ID: 31314573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance.
    Carrizo D; Muñoz-Iglesias V; Fernández-Sampedro MT; Gil-Lozano C; Sánchez-García L; Prieto-Ballesteros O; Medina J; Rull F
    Astrobiology; 2020 Mar; 20(3):405-414. PubMed ID: 31985262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars.
    Ming DW; Archer PD; Glavin DP; Eigenbrode JL; Franz HB; Sutter B; Brunner AE; Stern JC; Freissinet C; McAdam AC; Mahaffy PR; Cabane M; Coll P; Campbell JL; Atreya SK; Niles PB; Bell JF; Bish DL; Brinckerhoff WB; Buch A; Conrad PG; Des Marais DJ; Ehlmann BL; Fairén AG; Farley K; Flesch GJ; Francois P; Gellert R; Grant JA; Grotzinger JP; Gupta S; Herkenhoff KE; Hurowitz JA; Leshin LA; Lewis KW; McLennan SM; Miller KE; Moersch J; Morris RV; Navarro-González R; Pavlov AA; Perrett GM; Pradler I; Squyres SW; Summons RE; Steele A; Stolper EM; Sumner DY; Szopa C; Teinturier S; Trainer MG; Treiman AH; Vaniman DT; Vasavada AR; Webster CR; Wray JJ; Yingst RA;
    Science; 2014 Jan; 343(6169):1245267. PubMed ID: 24324276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Dallol Geothermal Area, Northern Afar (Ethiopia)-An Exceptional Planetary Field Analog on Earth.
    Cavalazzi B; Barbieri R; Gómez F; Capaccioni B; Olsson-Francis K; Pondrelli M; Rossi AP; Hickman-Lewis K; Agangi A; Gasparotto G; Glamoclija M; Ori GG; Rodriguez N; Hagos M
    Astrobiology; 2019 Apr; 19(4):553-578. PubMed ID: 30653331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars.
    Walter MR; Des Marais DJ
    Icarus; 1993 Jan; 101(1):129-43. PubMed ID: 11536937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrochemical and isotopic characteristics of water sources for biological activity across a massive evaporite basin on the Tibetan Plateau: Implications for aquatic environments on early Mars.
    Shen J; Huang T; Zhang H; Lin W
    Sci Total Environ; 2024 Jul; 935():173442. PubMed ID: 38788948
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Cohen BA; Malespin CA; Farley KA; Martin PE; Cho Y; Mahaffy PR
    Astrobiology; 2019 Nov; 19(11):1303-1314. PubMed ID: 31361510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbially Induced Sedimentary Structures in Clastic Deposits: Implication for the Prospection for Fossil Life on Mars.
    Noffke N
    Astrobiology; 2021 Jul; 21(7):866-892. PubMed ID: 34042490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative analysis of binary and ternary organo-mineral solid dispersions by Raman spectroscopy for robotic planetary exploration missions on Mars.
    Demaret L; Hutchinson IB; Eppe G; Malherbe C
    Analyst; 2021 Nov; 146(23):7306-7319. PubMed ID: 34755725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mars-Analog Calcium Sulfate Veins Record Evidence of Ancient Subsurface Life.
    McMahon S; Parnell J; Reekie PBR
    Astrobiology; 2020 Oct; 20(10):1212-1223. PubMed ID: 32985907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosignature Analysis of Mars Soil Analogs from the Atacama Desert: Challenges and Implications for Future Missions to Mars.
    Aerts JW; Riedo A; Melton DJ; Martini S; Flahaut J; Meierhenrich UJ; Meinert C; Myrgorodska I; Lindner R; Ehrenfreund P
    Astrobiology; 2020 Jun; 20(6):766-784. PubMed ID: 32167834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.
    Michalski JR; Jean-PierreBibring ; Poulet F; Loizeau D; Mangold N; Dobrea EN; Bishop JL; Wray JJ; McKeown NK; Parente M; Hauber E; Altieri F; Carrozzo FG; Niles PB
    Astrobiology; 2010 Sep; 10(7):687-703. PubMed ID: 20950170
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Molecular Record of Metabolic Activity in the Subsurface of the Río Tinto Mars Analog.
    Fernández-Remolar DC; Gomez-Ortiz D; Huang T; Anglés A; Shen Y; Hu Q; Amils R; Rodríguez N; Escudero C; Banerjee NR
    Astrobiology; 2021 Nov; 21(11):1387-1405. PubMed ID: 34449260
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxia Planum: The Landing Site for the ExoMars "Rosalind Franklin" Rover Mission: Geological Context and Prelanding Interpretation.
    Quantin-Nataf C; Carter J; Mandon L; Thollot P; Balme M; Volat M; Pan L; Loizeau D; Millot C; Breton S; Dehouck E; Fawdon P; Gupta S; Davis J; Grindrod PM; Pacifici A; Bultel B; Allemand P; Ody A; Lozach L; Broyer J
    Astrobiology; 2021 Mar; 21(3):345-366. PubMed ID: 33400892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrothermal systems on Mars: an assessment of present evidence.
    Farmer JD
    Ciba Found Symp; 1996; 202():273-95; discussion 295-9. PubMed ID: 9243021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars.
    Ruecker A; Schröder C; Byrne J; Weigold P; Behrens S; Kappler A
    Astrobiology; 2016 Jul; 16(7):525-38. PubMed ID: 27258848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars.
    Gainey SR; Hausrath EM; Adcock CT; Tschauner O; Hurowitz JA; Ehlmann BL; Xiao Y; Bartlett CL
    Nat Commun; 2017 Nov; 8(1):1230. PubMed ID: 29089493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.