These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Undecanoic Acid and L-Phenylalanine in Vermiculite: Detection, Characterization, and UV Degradation Studies for Biosignature Identification on Mars. McIntosh O; García-Florentino C; Fornaro T; Marabello D; Alberini A; Siljeström S; Biczysko M; Szopa C; Brucato J Astrobiology; 2024 May; 24(5):518-537. PubMed ID: 38669050 [TBL] [Abstract][Full Text] [Related]
64. Ancient aqueous environments at Endeavour crater, Mars. Arvidson RE; Squyres SW; Bell JF; Catalano JG; Clark BC; Crumpler LS; de Souza PA; Fairén AG; Farrand WH; Fox VK; Gellert R; Ghosh A; Golombek MP; Grotzinger JP; Guinness EA; Herkenhoff KE; Jolliff BL; Knoll AH; Li R; McLennan SM; Ming DW; Mittlefehldt DW; Moore JM; Morris RV; Murchie SL; Parker TJ; Paulsen G; Rice JW; Ruff SW; Smith MD; Wolff MJ Science; 2014 Jan; 343(6169):1248097. PubMed ID: 24458648 [TBL] [Abstract][Full Text] [Related]
65. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Squyres SW; Grotzinger JP; Arvidson RE; Bell JF; Calvin W; Christensen PR; Clark BC; Crisp JA; Farrand WH; Herkenhoff KE; Johnson JR; Klingelhöfer G; Knoll AH; McLennan SM; McSween HY; Morris RV; Rice JW; Rieder R; Soderblom LA Science; 2004 Dec; 306(5702):1709-14. PubMed ID: 15576604 [TBL] [Abstract][Full Text] [Related]
66. Spectral properties of Lake Superior banded iron formation: application to Martian hematite deposits. Fallacaro A; Calvin WM Astrobiology; 2006 Aug; 6(4):563-80. PubMed ID: 16916283 [TBL] [Abstract][Full Text] [Related]
67. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682 [TBL] [Abstract][Full Text] [Related]
68. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. Sun VZ; Milliken RE Astrobiology; 2020 Apr; 20(4):453-474. PubMed ID: 31545076 [TBL] [Abstract][Full Text] [Related]
69. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Price A; Pearson VK; Schwenzer SP; Miot J; Olsson-Francis K Front Microbiol; 2018; 9():513. PubMed ID: 29616015 [TBL] [Abstract][Full Text] [Related]
70. The use of mineral crystals as bio-markers in the search for life on Mars. Schwartz DE; Mancinelli RL; Kaneshiro ES Adv Space Res; 1992; 12(4):117-9. PubMed ID: 11538129 [TBL] [Abstract][Full Text] [Related]
71. Subglacial hydrothermal alteration minerals in Jökulhlaup deposits of Southern Iceland, with implications for detecting past or present habitable environments on Mars. Warner NH; Farmer JD Astrobiology; 2010 Jun; 10(5):523-47. PubMed ID: 20624060 [TBL] [Abstract][Full Text] [Related]
72. Landed XRD/XRF analysis of prime targets in the search for past or present Martian life. Vaniman D; Bish D; Blake D; Elliott ST; Sarrazin P; Collins SA; Chipera S J Geophys Res; 1998 Dec; 103(E13):31477-89. PubMed ID: 11542260 [TBL] [Abstract][Full Text] [Related]
73. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. Palma V; González-Pimentel JL; Jimenez-Morillo NT; Sauro F; Gutiérrez-Patricio S; De la Rosa JM; Tomasi I; Massironi M; Onac BP; Tiago I; González-Pérez JA; Laiz L; Caldeira AT; Cubero B; Miller AZ Sci Total Environ; 2024 Feb; 913():169583. PubMed ID: 38154629 [TBL] [Abstract][Full Text] [Related]
74. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Onstott TC; Ehlmann BL; Sapers H; Coleman M; Ivarsson M; Marlow JJ; Neubeck A; Niles P Astrobiology; 2019 Oct; 19(10):1230-1262. PubMed ID: 31237436 [TBL] [Abstract][Full Text] [Related]
75. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Fairén AG; Davila AF; Lim D; Bramall N; Bonaccorsi R; Zavaleta J; Uceda ER; Stoker C; Wierzchos J; Dohm JM; Amils R; Andersen D; McKay CP Astrobiology; 2010 Oct; 10(8):821-43. PubMed ID: 21087162 [TBL] [Abstract][Full Text] [Related]
76. Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration. Muñoz-Iglesias V; Sánchez-García L; Carrizo D; Molina A; Fernández-Sampedro M; Prieto-Ballesteros O Sci Rep; 2022 Apr; 12(1):5640. PubMed ID: 35379897 [TBL] [Abstract][Full Text] [Related]
77. Effects of Oxygen-Containing Salts on the Detection of Organic Biomarkers on Mars and in Terrestrial Analog Soils. Montgomery W; Jaramillo EA; Royle SH; Kounaves SP; Schulze-Makuch D; Sephton MA Astrobiology; 2019 Jun; 19(6):711-721. PubMed ID: 31062993 [TBL] [Abstract][Full Text] [Related]
78. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars. Rix CS; Sims MR; Cullen DC Astrobiology; 2011 Nov; 11(9):839-46. PubMed ID: 22011057 [TBL] [Abstract][Full Text] [Related]
79. Metabolic Processes Preserved as Biosignatures in Iron-Oxidizing Microorganisms: Implications for Biosignature Detection on Mars. Floyd MAM; Williams AJ; Grubisic A; Emerson D Astrobiology; 2019 Jan; 19(1):40-52. PubMed ID: 30044121 [TBL] [Abstract][Full Text] [Related]
80. Fingerprinting molecular and isotopic biosignatures on different hydrothermal scenarios of Iceland, an acidic and sulfur-rich Mars analog. Sánchez-García L; Carrizo D; Molina A; Muñoz-Iglesias V; Lezcano MÁ; Fernández-Sampedro M; Parro V; Prieto-Ballesteros O Sci Rep; 2020 Dec; 10(1):21196. PubMed ID: 33273669 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]