These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33836063)
1. MendelVar: gene prioritization at GWAS loci using phenotypic enrichment of Mendelian disease genes. Sobczyk MK; Gaunt TR; Paternoster L Bioinformatics; 2021 Apr; 37(1):1-8. PubMed ID: 33836063 [TBL] [Abstract][Full Text] [Related]
2. GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Lu Q; Yao X; Hu Y; Zhao H Bioinformatics; 2016 Feb; 32(4):542-8. PubMed ID: 26504140 [TBL] [Abstract][Full Text] [Related]
3. Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. Freund MK; Burch KS; Shi H; Mancuso N; Kichaev G; Garske KM; Pan DZ; Miao Z; Mohlke KL; Laakso M; Pajukanta P; Pasaniuc B; Arboleda VA Am J Hum Genet; 2018 Oct; 103(4):535-552. PubMed ID: 30290150 [TBL] [Abstract][Full Text] [Related]
4. ezQTL: A Web Platform for Interactive Visualization and Colocalization of QTLs and GWAS Loci. Zhang T; Klein A; Sang J; Choi J; Brown KM Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):541-548. PubMed ID: 35643189 [TBL] [Abstract][Full Text] [Related]
5. SNPsnap: a Web-based tool for identification and annotation of matched SNPs. Pers TH; Timshel P; Hirschhorn JN Bioinformatics; 2015 Feb; 31(3):418-20. PubMed ID: 25316677 [TBL] [Abstract][Full Text] [Related]
6. A framework for pathway knowledge driven prioritization in genome-wide association studies. Biswas S; Pal S; Majumder PP; Bhattacharjee S Genet Epidemiol; 2020 Nov; 44(8):841-853. PubMed ID: 32779262 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants. Markunas CA; Johnson EO; Hancock DB Hum Genet; 2017 Jul; 136(7):911-919. PubMed ID: 28567521 [TBL] [Abstract][Full Text] [Related]
8. SCAN: SNP and copy number annotation. Gamazon ER; Zhang W; Konkashbaev A; Duan S; Kistner EO; Nicolae DL; Dolan ME; Cox NJ Bioinformatics; 2010 Jan; 26(2):259-62. PubMed ID: 19933162 [TBL] [Abstract][Full Text] [Related]
9. Functional mapping and annotation of genetic associations with FUMA. Watanabe K; Taskesen E; van Bochoven A; Posthuma D Nat Commun; 2017 Nov; 8(1):1826. PubMed ID: 29184056 [TBL] [Abstract][Full Text] [Related]
10. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144 [TBL] [Abstract][Full Text] [Related]
11. KidneyGPS: a user-friendly web application to help prioritize kidney function genes and variants based on evidence from genome-wide association studies. Stanzick KJ; Stark KJ; Gorski M; Schödel J; Krüger R; Kronenberg F; Warth R; Heid IM; Winkler TW BMC Bioinformatics; 2023 Sep; 24(1):355. PubMed ID: 37735349 [TBL] [Abstract][Full Text] [Related]
12. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome. Wang Y; Chen L Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868 [TBL] [Abstract][Full Text] [Related]
13. Snat: a SNP annotation tool for bovine by integrating various sources of genomic information. Jiang J; Jiang L; Zhou B; Fu W; Liu JF; Zhang Q BMC Genet; 2011 Oct; 12():85. PubMed ID: 21982513 [TBL] [Abstract][Full Text] [Related]
14. iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies. Rojo C; Zhang Q; Keleş S Genet Epidemiol; 2019 Oct; 43(7):742-760. PubMed ID: 31328826 [TBL] [Abstract][Full Text] [Related]
15. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501 [TBL] [Abstract][Full Text] [Related]
16. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization. Antanaviciute A; Watson CM; Harrison SM; Lascelles C; Crinnion L; Markham AF; Bonthron DT; Carr IM Bioinformatics; 2015 Dec; 31(23):3822-9. PubMed ID: 26272982 [TBL] [Abstract][Full Text] [Related]
17. Varanto: variant enrichment analysis and annotation. Timonen O; Särkkä M; Fülöp T; Mattsson A; Kekäläinen J; Paananen J Bioinformatics; 2019 Sep; 35(17):3154-3156. PubMed ID: 30689722 [TBL] [Abstract][Full Text] [Related]
18. LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS. Panjwani N; Wang F; Mastromatteo S; Bao A; Wang C; He G; Gong J; Rommens JM; Sun L; Strug LJ PLoS Comput Biol; 2020 Oct; 16(10):e1008336. PubMed ID: 33090994 [TBL] [Abstract][Full Text] [Related]
19. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Li B; Ritchie MD Front Genet; 2021; 12():713230. PubMed ID: 34659337 [TBL] [Abstract][Full Text] [Related]
20. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Mountjoy E; Schmidt EM; Carmona M; Schwartzentruber J; Peat G; Miranda A; Fumis L; Hayhurst J; Buniello A; Karim MA; Wright D; Hercules A; Papa E; Fauman EB; Barrett JC; Todd JA; Ochoa D; Dunham I; Ghoussaini M Nat Genet; 2021 Nov; 53(11):1527-1533. PubMed ID: 34711957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]