BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 33836078)

  • 1. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells.
    Ulianov SV; Velichko AK; Magnitov MD; Luzhin AV; Golov AK; Ovsyannikova N; Kireev II; Gavrikov AS; Mishin AS; Garaev AK; Tyakht AV; Gavrilov AA; Kantidze OL; Razin SV
    Nucleic Acids Res; 2021 Oct; 49(18):10524-10541. PubMed ID: 33836078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization.
    Liu X; Jiang S; Ma L; Qu J; Zhao L; Zhu X; Ding J
    Genome Biol; 2021 Aug; 22(1):230. PubMed ID: 34404453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the phase separation property of chromatin-associated proteins under physiological conditions using an anti-1,6-hexanediol index.
    Shi M; You K; Chen T; Hou C; Liang Z; Liu M; Wang J; Wei T; Qin J; Chen Y; Zhang MQ; Li T
    Genome Biol; 2021 Aug; 22(1):229. PubMed ID: 34404448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,6-hexanediol rapidly immobilizes and condenses chromatin in living human cells.
    Itoh Y; Iida S; Tamura S; Nagashima R; Shiraki K; Goto T; Hibino K; Ide S; Maeshima K
    Life Sci Alliance; 2021 Apr; 4(4):. PubMed ID: 33536240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating phase separation properties of chromatin-associated proteins using gradient elution of 1,6-hexanediol.
    Zhu P; Hou C; Liu M; Chen T; Li T; Wang L
    BMC Genomics; 2023 Aug; 24(1):493. PubMed ID: 37641002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of liquid-liquid phase separation in plant chromatin organization and transcriptional control.
    Wang N; Liu C
    Curr Opin Genet Dev; 2019 Apr; 55():59-65. PubMed ID: 31306885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection.
    Jia Z; Li J; Ge X; Wu Y; Guo Y; Wu Q
    Genome Biol; 2020 Mar; 21(1):75. PubMed ID: 32293525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities.
    Düster R; Kaltheuner IH; Schmitz M; Geyer M
    J Biol Chem; 2021; 296():100260. PubMed ID: 33814344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting liquid-liquid phase separation in pancreatic cancer.
    Ming Y; Chen X; Xu Y; Wu Y; Wang C; Zhang T; Mao R; Fan Y
    Transl Cancer Res; 2019 Feb; 8(1):96-103. PubMed ID: 35116738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions.
    Farr SE; Woods EJ; Joseph JA; Garaizar A; Collepardo-Guevara R
    Nat Commun; 2021 May; 12(1):2883. PubMed ID: 34001913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear compartments, genome folding, and enhancer-promoter communication.
    Ulianov SV; Gavrilov AA; Razin SV
    Int Rev Cell Mol Biol; 2015; 315():183-244. PubMed ID: 25708464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of single-cell genome organization into TADs and chromatin nanodomains.
    Szabo Q; Donjon A; Jerković I; Papadopoulos GL; Cheutin T; Bonev B; Nora EP; Bruneau BG; Bantignies F; Cavalli G
    Nat Genet; 2020 Nov; 52(11):1151-1157. PubMed ID: 33077913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites.
    Kim J; Kang J; Kim YW; Kim A
    FASEB J; 2021 Jun; 35(6):e21669. PubMed ID: 34033138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation.
    Ge X; Huang H; Han K; Xu W; Wang Z; Wu Q
    Nat Commun; 2023 Dec; 14(1):8101. PubMed ID: 38062010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?
    Mir M; Bickmore W; Furlong EEM; Narlikar G
    Development; 2019 Sep; 146(19):. PubMed ID: 31554625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus.
    Kang J; Kim YW; Park S; Kang Y; Kim A
    FASEB J; 2021 Aug; 35(8):e21768. PubMed ID: 34245617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.
    Hsieh TS; Cattoglio C; Slobodyanyuk E; Hansen AS; Rando OJ; Tjian R; Darzacq X
    Mol Cell; 2020 May; 78(3):539-553.e8. PubMed ID: 32213323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.