These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems. Kurokawa YK; Yin RT; Shang MR; Shirure VS; Moya ML; George SC Tissue Eng Part C Methods; 2017 Aug; 23(8):474-484. PubMed ID: 28622076 [TBL] [Abstract][Full Text] [Related]
3. Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells. Vila Cuenca M; Cochrane A; van den Hil FE; de Vries AAF; Lesnik Oberstein SAJ; Mummery CL; Orlova VV Stem Cell Reports; 2021 Sep; 16(9):2159-2168. PubMed ID: 34478648 [TBL] [Abstract][Full Text] [Related]
4. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development. Sances S; Ho R; Vatine G; West D; Laperle A; Meyer A; Godoy M; Kay PS; Mandefro B; Hatata S; Hinojosa C; Wen N; Sareen D; Hamilton GA; Svendsen CN Stem Cell Reports; 2018 Apr; 10(4):1222-1236. PubMed ID: 29576540 [TBL] [Abstract][Full Text] [Related]
5. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
6. Standardizing designed and emergent quantitative features in microphysiological systems. Nahon DM; Moerkens R; Aydogmus H; Lendemeijer B; Martínez-Silgado A; Stein JM; Dostanić M; Frimat JP; Gontan C; de Graaf MNS; Hu M; Kasi DG; Koch LS; Le KTT; Lim S; Middelkamp HHT; Mooiweer J; Motreuil-Ragot P; Niggl E; Pleguezuelos-Manzano C; Puschhof J; Revyn N; Rivera-Arbelaez JM; Slager J; Windt LM; Zakharova M; van Meer BJ; Orlova VV; de Vrij FMS; Withoff S; Mastrangeli M; van der Meer AD; Mummery CL Nat Biomed Eng; 2024 Aug; 8(8):941-962. PubMed ID: 39187664 [TBL] [Abstract][Full Text] [Related]
7. Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications. Kusuma S; Facklam A; Gerecht S Stem Cells Dev; 2015 Feb; 24(4):451-8. PubMed ID: 25233291 [TBL] [Abstract][Full Text] [Related]
8. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Cochrane A; Albers HJ; Passier R; Mummery CL; van den Berg A; Orlova VV; van der Meer AD Adv Drug Deliv Rev; 2019 Feb; 140():68-77. PubMed ID: 29944904 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous induction of vasculature and neuronal network formation on a chip reveals a dynamic interrelationship between cell types. Isosaari L; Vuorenpää H; Yrjänäinen A; Kapucu FE; Kelloniemi M; Pakarinen TK; Miettinen S; Narkilahti S Cell Commun Signal; 2023 Jun; 21(1):132. PubMed ID: 37316873 [TBL] [Abstract][Full Text] [Related]
10. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Doherty EL; Krohn G; Warren EC; Patton A; Whitworth CP; Rathod M; Biehl A; Aw WY; Freytes DO; Polacheck WJ Adv Healthc Mater; 2024 Jul; 13(19):e2400192. PubMed ID: 38518808 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization and expression profiling of human induced pluripotent stem cell- and embryonic stem cell-derived endothelial cells. Li Z; Hu S; Ghosh Z; Han Z; Wu JC Stem Cells Dev; 2011 Oct; 20(10):1701-10. PubMed ID: 21235328 [TBL] [Abstract][Full Text] [Related]
12. Circulating endothelial progenitors in vascular repair. Ferratge S; Boyer J; Arouch N; Chevalier F; Uzan G Biomed Mater Eng; 2017; 28(s1):S65-S74. PubMed ID: 28372279 [TBL] [Abstract][Full Text] [Related]
13. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Lee-Montiel FT; Laemmle A; Charwat V; Dumont L; Lee CS; Huebsch N; Okochi H; Hancock MJ; Siemons B; Boggess SC; Goswami I; Miller EW; Willenbring H; Healy KE Front Pharmacol; 2021; 12():667010. PubMed ID: 34025426 [TBL] [Abstract][Full Text] [Related]
14. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan]. Kimura H Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538 [TBL] [Abstract][Full Text] [Related]
15. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Orlova VV; Drabsch Y; Freund C; Petrus-Reurer S; van den Hil FE; Muenthaisong S; Dijke PT; Mummery CL Arterioscler Thromb Vasc Biol; 2014 Jan; 34(1):177-86. PubMed ID: 24158517 [TBL] [Abstract][Full Text] [Related]
16. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Rubiano A; Indapurkar A; Yokosawa R; Miedzik A; Rosenzweig B; Arefin A; Moulin CM; Dame K; Hartman N; Volpe DA; Matta MK; Hughes DJ; Strauss DG; Kostrzewski T; Ribeiro AJS Clin Transl Sci; 2021 May; 14(3):1049-1061. PubMed ID: 33382907 [TBL] [Abstract][Full Text] [Related]
17. Microphysiological Systems: Design, Fabrication, and Applications. Wang K; Man K; Liu J; Liu Y; Chen Q; Zhou Y; Yang Y ACS Biomater Sci Eng; 2020 Jun; 6(6):3231-3257. PubMed ID: 33204830 [TBL] [Abstract][Full Text] [Related]
18. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Hargrove-Grimes P; Low LA; Tagle DA Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142 [TBL] [Abstract][Full Text] [Related]
19. Patient-Derived Microphysiological Systems for Precision Medicine. Ko J; Song J; Choi N; Kim HN Adv Healthc Mater; 2024 Mar; 13(7):e2303161. PubMed ID: 38010253 [TBL] [Abstract][Full Text] [Related]