These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 33836244)

  • 1. Hippocampal and Septal 5-HT
    Schönhoff K; von Rüden EL; Koska I; Seiffert I; Potschka H
    Neuroscience; 2021 Jun; 465():219-230. PubMed ID: 33836244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PET Neuroimaging Reveals Serotonergic and Metabolic Dysfunctions in the Hippocampal Electrical Kindling Model of Epileptogenesis.
    Bascuñana P; García-García L; Javela J; Fernández de la Rosa R; Shiha AA; Kelly J; Delgado M; Pozo MÁ
    Neuroscience; 2019 Jun; 409():101-110. PubMed ID: 31034972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging correlates of behavioral impairments: An experimental PET study in the rat pilocarpine epilepsy model.
    Di Liberto V; van Dijk RM; Brendel M; Waldron AM; Möller C; Koska I; Seiffert I; Gualtieri F; Gildehaus FJ; von Ungern-Sternberg B; Lindner M; Ziegler S; Palme R; Hellweg R; Gass P; Bartenstein P; Potschka H
    Neurobiol Dis; 2018 Oct; 118():9-21. PubMed ID: 29933054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging biomarkers of behavioral impairments: A pilot micro-positron emission tomographic study in a rat electrical post-status epilepticus model.
    van Dijk RM; Di Liberto V; Brendel M; Waldron AM; Möller C; Gildehaus FJ; von Ungern-Sternberg B; Lindner M; Ziegler S; Hellweg R; Gass P; Bartenstein P; Potschka H
    Epilepsia; 2018 Dec; 59(12):2194-2205. PubMed ID: 30370531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy.
    Meller S; Brandt C; Theilmann W; Klein J; Löscher W
    Brain Res; 2019 Jun; 1712():109-123. PubMed ID: 30703372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of 5-HT1A receptor-induced G-protein functional activation and relationship to memory deficits in patients with pharmacoresistant temporal lobe epilepsy.
    Cuellar-Herrera M; Velasco AL; Velasco F; Trejo D; Alonso-Vanegas M; Nuche-Bricaire A; Vázquez-Barrón D; Guevara-Guzmán R; Rocha L
    Epilepsy Res; 2014 Dec; 108(10):1853-63. PubMed ID: 25304920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG.
    Merlet I; Ryvlin P; Costes N; Dufournel D; Isnard J; Faillenot I; Ostrowsky K; Lavenne F; Le Bars D; Mauguière F
    Neuroimage; 2004 Jun; 22(2):886-96. PubMed ID: 15193619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis.
    Goffin K; Van Paesschen W; Van Laere K
    Brain; 2011 Apr; 134(Pt 4):1033-40. PubMed ID: 21303859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study.
    Merlet I; Ostrowsky K; Costes N; Ryvlin P; Isnard J; Faillenot I; Lavenne F; Dufournel D; Le Bars D; Mauguière F
    Brain; 2004 Apr; 127(Pt 4):900-13. PubMed ID: 14985263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of microglial KCa3.1 channels by TRAM-34 exacerbates hippocampal neurodegeneration and does not affect ictogenesis and epileptogenesis in chronic temporal lobe epilepsy models.
    Ongerth T; Russmann V; Fischborn S; Boes K; Siegl C; Potschka H
    Eur J Pharmacol; 2014 Oct; 740():72-80. PubMed ID: 25016931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy.
    Jiang Z; Guo M; Shi C; Wang H; Yao L; Liu L; Xie C; Pu S; LaChaud G; Shen J; Zhu M; Mu L; Ge H; Long Y; Wang X; Song Y; Sun J; Hou X; Zarringhalam A; Park SH; Shi C; Shen H; Lin Z
    Neuroscience; 2015 Dec; 310():362-71. PubMed ID: 26415768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy.
    Petkova Z; Tchekalarova J; Pechlivanova D; Moyanova S; Kortenska L; Mitreva R; Popov D; Markova P; Lozanov V; Atanasova D; Lazarov N; Stoynev A
    Epilepsy Behav; 2014 Feb; 31():198-208. PubMed ID: 24440891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo measurement of brain network connectivity reflects progression and intrinsic disease severity in a model of temporal lobe epilepsy.
    Bertoglio D; Jonckers E; Ali I; Verhoye M; Van der Linden A; Dedeurwaerdere S
    Neurobiol Dis; 2019 Jul; 127():45-52. PubMed ID: 30798008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (R)-[11C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance: evaluation in a rat epilepsy model.
    Bogdanović RM; Syvänen S; Michler C; Russmann V; Eriksson J; Windhorst AD; Lammertsma AA; de Lange EC; Voskuyl RA; Potschka H
    Neuropharmacology; 2014 Oct; 85():104-12. PubMed ID: 24880085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of P-glycoprotein-mediated pharmacoresistance in the hippocampus: proof-of-concept in a chronic rat model of temporal lobe epilepsy.
    Bartmann H; Fuest C; la Fougere C; Xiong G; Just T; Schlichtiger J; Winter P; Böning G; Wängler B; Pekcec A; Soerensen J; Bartenstein P; Cumming P; Potschka H
    Epilepsia; 2010 Sep; 51(9):1780-90. PubMed ID: 20633036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy.
    Toczek MT; Carson RE; Lang L; Ma Y; Spanaki MV; Der MG; Fazilat S; Kopylev L; Herscovitch P; Eckelman WC; Theodore WH
    Neurology; 2003 Mar; 60(5):749-56. PubMed ID: 12629228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drug-refractory epilepsy.
    Alves M; Gomez-Villafuertes R; Delanty N; Farrell MA; O'Brien DF; Miras-Portugal MT; Hernandez MD; Henshall DC; Engel T
    Epilepsia; 2017 Sep; 58(9):1603-1614. PubMed ID: 28733972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive PET imaging of brain inflammation at disease onset predicts spontaneous recurrent seizures and reflects comorbidities.
    Bertoglio D; Verhaeghe J; Santermans E; Amhaoul H; Jonckers E; Wyffels L; Van Der Linden A; Hens N; Staelens S; Dedeurwaerdere S
    Brain Behav Immun; 2017 Mar; 61():69-79. PubMed ID: 28017648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of brain regions predicting epileptogenesis by serial [
    Russmann V; Brendel M; Mille E; Helm-Vicidomini A; Beck R; Günther L; Lindner S; Rominger A; Keck M; Salvamoser JD; Albert NL; Bartenstein P; Potschka H
    Neuroimage Clin; 2017; 15():35-44. PubMed ID: 28462087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy.
    Brandt C; Potschka H; Löscher W; Ebert U
    Neuroscience; 2003; 118(3):727-40. PubMed ID: 12710980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.