BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33836392)

  • 1. Characteristics of fractionated drop-in liquid fuel of plastic wastes from a commercial pyrolysis plant.
    Lee D; Nam H; Wang S; Kim H; Kim JH; Won Y; Hwang BW; Kim YD; Nam H; Lee KH; Ryu HJ
    Waste Manag; 2021 May; 126():411-422. PubMed ID: 33836392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.
    Ramesha DK; Kumara GP; Lalsaheb ; Mohammed AV; Mohammad HA; Kasma MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):9432-9. PubMed ID: 26695415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
    Auxilio AR; Choo WL; Kohli I; Chakravartula Srivatsa S; Bhattacharya S
    Waste Manag; 2017 Sep; 67():143-154. PubMed ID: 28532621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a pyrolyser model for the conversion of thermoplastics into fuels.
    Dassi Djoukouo NH; Djousse BMK; Doukeng HG; Egbe DAM; Tangka JK; Tchoffo M
    Heliyon; 2024 Mar; 10(5):e26702. PubMed ID: 38463835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transportation fuel from plastic: Two cases of study.
    Faussone GC
    Waste Manag; 2018 Mar; 73():416-423. PubMed ID: 29158003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.
    Joppert N; da Silva AA; da Costa Marques MR
    Waste Manag; 2015 Feb; 36():166-76. PubMed ID: 25532672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.
    Assumpção LC; Carbonell MM; Marques MR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):461-4. PubMed ID: 21409698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO
    Karisathan Sundararajan N; Ammal ARB
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11595-11613. PubMed ID: 29429107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil.
    Subhashini ; Mondal T
    J Environ Manage; 2023 Oct; 344():118680. PubMed ID: 37531671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical insights into the effects of plastic pyrolysis oil on emission and performance characteristics of CI engine.
    Saha D; Sinha A; Roy B
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):44598-44621. PubMed ID: 34212326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the use of plastic pyrolysis oil as alternate fuel in a direct injection diesel engine with titanium oxide nanoadditive.
    Bharathy S; Gnanasikamani B; Radhakrishnan Lawrence K
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10319-10332. PubMed ID: 30761488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of waste plastics into low emissive hydrocarbon fuel using catalyst produced from biowaste.
    Jahnavi N; Kanmani K; Kumar PS; Varjani S
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63638-63645. PubMed ID: 33113066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and screening of process parameters for the robust co-pyrolytic study of waste motor oil and rice stubble toward sustainable waste-to-fuel generation.
    Mishra A; Meikap BC
    Chemosphere; 2024 Mar; 352():141450. PubMed ID: 38367876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of plastic waste into fuels: A critical review.
    Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel.
    Das P; Tiwari P
    Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.