These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 33836439)
1. A spatially based quantile regression forest model for mapping rural land values. Córdoba M; Carranza JP; Piumetto M; Monzani F; Balzarini M J Environ Manage; 2021 Jul; 289():112509. PubMed ID: 33836439 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Ren X; Mi Z; Georgopoulos PG Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
4. Spatial prediction of soil depth using environmental covariates by quantile regression forest model. Lalitha M; Dharumarajan S; Suputhra A; Kalaiselvi B; Hegde R; Reddy RS; Prasad CRS; Harindranath CS; Dwivedi BS Environ Monit Assess; 2021 Sep; 193(10):660. PubMed ID: 34535809 [TBL] [Abstract][Full Text] [Related]
5. A Comparative Assessment of the Influences of Human Impacts on Soil Cd Concentrations Based on Stepwise Linear Regression, Classification and Regression Tree, and Random Forest Models. Qiu L; Wang K; Long W; Wang K; Hu W; Amable GS PLoS One; 2016; 11(3):e0151131. PubMed ID: 26964095 [TBL] [Abstract][Full Text] [Related]
6. Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Parsaie F; Farrokhian Firouzi A; Mousavi SR; Rahmani A; Sedri MH; Homaee M Environ Monit Assess; 2021 Mar; 193(4):162. PubMed ID: 33665671 [TBL] [Abstract][Full Text] [Related]
7. Kriging-Based Land-Use Regression Models That Use Machine Learning Algorithms to Estimate the Monthly BTEX Concentration. Hsu CY; Zeng YT; Chen YC; Chen MJ; Lung SC; Wu CD Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32977562 [TBL] [Abstract][Full Text] [Related]
8. Spatial modeling of land subsidence using machine learning models and statistical methods. Sekkeravani MA; Bazrafshan O; Pourghasemi HR; Holisaz A Environ Sci Pollut Res Int; 2022 Apr; 29(19):28866-28883. PubMed ID: 34993808 [TBL] [Abstract][Full Text] [Related]
9. Using a land use regression model with machine learning to estimate ground level PM Wong PY; Lee HY; Chen YC; Zeng YT; Chern YR; Chen NT; Candice Lung SC; Su HJ; Wu CD Environ Pollut; 2021 May; 277():116846. PubMed ID: 33735646 [TBL] [Abstract][Full Text] [Related]
10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [