BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33836750)

  • 1. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development.
    Chen X; Guo R; Wang C; Li K; Jiang X; He H; Hong W
    J Nanobiotechnology; 2021 Apr; 19(1):99. PubMed ID: 33836750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms.
    Guo R; Li K; Tian B; Wang C; Chen X; Jiang X; He H; Hong W
    J Nanobiotechnology; 2021 Aug; 19(1):232. PubMed ID: 34362397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial biofilm destruction by size/surface charge-adaptive micelles.
    Chen M; Wei J; Xie S; Tao X; Zhang Z; Ran P; Li X
    Nanoscale; 2019 Jan; 11(3):1410-1422. PubMed ID: 30608101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size and Charge Adaptive Clustered Nanoparticles Targeting the Biofilm Microenvironment for Chronic Lung Infection Management.
    Gao Y; Wang J; Chai M; Li X; Deng Y; Jin Q; Ji J
    ACS Nano; 2020 May; 14(5):5686-5699. PubMed ID: 32320228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Activity of Berberine with Azithromycin against Pseudomonas Aeruginosa Isolated from Patients with Cystic Fibrosis of Lung In Vitro and In Vivo.
    Li Y; Huang J; Li L; Liu L
    Cell Physiol Biochem; 2017; 42(4):1657-1669. PubMed ID: 28738346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms.
    Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L
    ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azithromycin and ciprofloxacin: a possible synergistic combination against Pseudomonas aeruginosa biofilm-associated urinary tract infections.
    Saini H; Chhibber S; Harjai K
    Int J Antimicrob Agents; 2015 Apr; 45(4):359-67. PubMed ID: 25604277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step-by-step dual stimuli-responsive nanoparticles for efficient bacterial biofilm eradication.
    Fan Q; Wang C; Guo R; Jiang X; Li W; Chen X; Li K; Hong W
    Biomater Sci; 2021 Oct; 9(20):6889-6902. PubMed ID: 34519743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azithromycin retards Pseudomonas aeruginosa biofilm formation.
    Gillis RJ; Iglewski BH
    J Clin Microbiol; 2004 Dec; 42(12):5842-5. PubMed ID: 15583321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli.
    Guo R; Li K; Qin J; Niu S; Hong W
    Nanoscale; 2020 May; 12(20):11251-11266. PubMed ID: 32412567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Combined Ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds.
    Raouf M; Essa S; El Achy S; Essawy M; Rafik S; Baddour M
    Indian J Med Microbiol; 2021 Jan; 39(1):81-87. PubMed ID: 33460732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Albumin-coated pH-responsive dimeric prodrug-based nano-assemblies with high biofilm eradication capacity.
    Li X; Li W; Li K; Chen X; Wang C; Qiao M; Hong W
    Biomater Sci; 2023 Jan; 11(3):1031-1041. PubMed ID: 36545821
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms.
    Gillis RJ; White KG; Choi KH; Wagner VE; Schweizer HP; Iglewski BH
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3858-67. PubMed ID: 16127063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections.
    Bala A; Kumar R; Harjai K
    J Med Microbiol; 2011 Mar; 60(Pt 3):300-306. PubMed ID: 21127154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models.
    Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ
    Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa.
    Saini H; Vadekeetil A; Chhibber S; Harjai K
    Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 28031194
    [No Abstract]   [Full Text] [Related]  

  • 17. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice.
    Hoffmann N; Lee B; Hentzer M; Rasmussen TB; Song Z; Johansen HK; Givskov M; Høiby N
    Antimicrob Agents Chemother; 2007 Oct; 51(10):3677-87. PubMed ID: 17620382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics.
    Chen M; Xie S; Wei J; Song X; Ding Z; Li X
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36814-36823. PubMed ID: 30298721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.
    Mulet X; Maciá MD; Mena A; Juan C; Pérez JL; Oliver A
    Antimicrob Agents Chemother; 2009 Apr; 53(4):1552-60. PubMed ID: 19188376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin.
    Konikkat S; Scribner MR; Eutsey R; Hiller NL; Cooper VS; McManus J
    PLoS Genet; 2021 Jul; 17(7):e1009634. PubMed ID: 34252072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.